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Abstract

In healthcare, neuroimaging studies and genetics research are generating torrents of
data to understand the hereditary components of neurological and psychiatric disorders.
Different neuroimaging techniques like functional Magnetic Resonance Imaging (f-MRI)
probes into the neural functioning of the disorder. In parallel, genome sequencing
technologies explore the genetic underpinning. Integrating these complementary
viewpoints in a single framework improves diagnosis and provides biological insights
about the disorders. However, imaging-genetic data lies in a very high-dimensional
space with complex interaction and unknown causal factors. Our research aims to
integrate multimodal imaging-genetics data to predict neuropsychiatric disorders while

identifying biomarkers to provide biological insights.

We propose a novel generative-discriminative framework that integrates imaging
and genetics data for simultaneous biomarker identification and disease classification.
The generative module extracts representation patterns from the data, while the
discriminative module uses the representation vectors for diagnosis. Our experimental
analyses show that the discriminative module implicitly guides our framework, leading

to improved disease diagnosis and biomarker identification.

Although our model successfully integrates imaging and genetic data, it fails to
capture the complex non-linear interaction between the data modalities. To alleviate
this problem, we introduce an autoencoder framework coupled with a classifier. The
autoencoder learns the subspace shared between the input data modalities, and

the classifier ensures that the subspace contains discriminative information. Unlike
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traditional encoder-decoder models, our encoder module jointly identifies predictive

imaging and genetic biomarkers using Bayesian feature selection.

We extend our Bayesian approach for feature selection to provide a fine-grained
interpretation of the genetic variants that causally affect a trait. However, correct
identification of the causal variants is challenging due to the correlation structure
shared across variants. Our model combines a hierarchical Bayesian model with a deep
learning-based inference procedure. We show that this combination provides greater

inferential power to handle noise and spurious interactions of the genomic region.

Finally, we focus on solving the problem of encoding whole genome genotype data
in an imaging-genetics framework. Traditionally, imaging-genetics models integrate
imaging data with a sub-selected set of genetic features to ensure model stability.
Our approach, an extension of the autoencoder framework, adheres to the same
imaging encoding and Bayesian feature selection strategies. However, it departs from
conventional Artificial Neural Networks (ANN) and introduces biologically regularized
graph convolution networks to encode the whole genome genotype data. Our approach
uses gene ontology to build a hierarchical graph that consolidates the genetic risk
through predefined biological processes. We show that this embedding strategy helps
us to track the convergence of genetic risk across well-established biological processes
while preventing overfitting. Lastly, in an exploratory analysis, we use this model to
investigate the underlying biological processes associated with behavioral phenotypes

of autism spectrum disorder and schizophrenia.
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Chapter 1

Introduction

1.1 Multifaceted Nature of Neuropsychiatric Dis-
orders

Neuropsychiatric disorders such as autism and schizophrenia have two complementary
viewpoints. On the one hand, they are associated with behavioral and cognitive
dysfunctions [1, 2], which results in altered brain activity [3, 4]. On the other hand,

they are highly heritable, which suggests a strong genetic underpinning [5].

Modern-day neuroimaging techniques like Magnetic Resonance Imaging (MRI),
and functional Magnetic Resonance Imaging (fMRI) provide a non-invasive way to
explore the structural [6] and functional organization [7] of the brain. For instance,
MRI gives us measures of morphological changes in brain regions, and fMRI quantifies
neuronal activity in response to experimental stimulus. In the past decade, multiple
studies have investigated the association of these quantifiable imaging phenotypes
with clinical outcomes using both univariate [8—10] and multivariate [1 1-14] models.
These models have successfully pinpointed multiple brain phenotypes but often ignore
the heritable component of the disorder, thus lacking in explaining the underlying
biology.

On the other front, with the advent of low-cost sequencing technologies [15],

multiple consortia (UK Biobank, PGC) were able to generate large volumes of whole



genome genotype data. Genome Wide Association Studies (GWAS) [16, 17] have
developed multiple univariate testing tools to identify the level of association of
each genetic variant to the outcome. These models can successfully identify the
targets [18, 19] on the genome and explain the underlying etiology of the disease using
gene expression [20], gene-enrichment [21] or pathway-based analyses [22]. However,
multiple gene-gene [23] or gene-environment [24] interactions make it difficult to

decipher the genetic contributions without integrating other biological modalities.

Most studies decouple the problems of disentangling the neural mechanisms[25] and
pinpointing genetic variations [17], which ultimately provides an incomplete picture of
the underlying disorder [26, 27]. Recently, the works of [28, 29] have used brain imaging
phenotypes to elucidate the mechanisms through which genetics confer risk. [30] used
polygenic risk scores to predict hippocampal activity in schizophrenia. They found that
decreased hippocampal-parahippocampal activity is strongly associated with a high
polygenic risk score. Similar strategies [31] have seen a significant association between
polygenic risk and white matter connectivity in frontal-parietal regions for autism
spectrum disorder. On a high level, the imaging modality acts as an intermediate
phenotype that guides the imaging genetics models to strategically consolidate the
genetic risk associated with the clinical traits. These studies have provided evidence
that clinical traits like cognitive dysfunction, and impaired social and communication
skills are associated with genetic risks, but they fail to pinpoint the target genetic
variants, genes, or molecular and biological functions. This drawback motivates the
need to develop robust, and interpretable frameworks for integrating whole brain

whole genome data for biomarker discovery and predictive analytics.



1.2 Complex Genetic Heritability of Neuropsychi-
atric Disorders

Multiple family and twin studies [32, 33] have found that neuropsychiatric disorders
like schizophrenia and autism are highly hereditary (60% — 80%) [32, 33]. However,
the heritability estimated by common genetic variants from multiple genome-wide
association studies is much lower [16, 17]. The heritability gap [34] is often associated
with the gene-gene interaction [23], non-linear genetic effects [35], and gene-environment
interactions [24]. In addition, schizophrenia and autism are heterogeneous disorders,
often characterized by a broad spectrum of phenotypes [36]. Therefore, multiple genes
could potentially affect various biological pathways with downstream effects on the
behavioral level. In fact, the recent GWAS on schizophrenia [37] and autism [16] have

shown evidence that both these disorders are polygenic [38], which means different

genes act in concordance, leading to the disorder.

Parsing the genetic risk associated with these disorders is a two-step process. The
first step involves identifying the target [39, 40] risk variants from GWAS results, and
the second step involves connecting the risk variants with the downstream biologi-
cal function using gene enrichment or expression-based analysis [18, 41]. However,
identifying the target variant is challenging due to the correlation structure between
variants, which arises due to low genomic recombination of nearby DNA regions [412].
Consequently, the strong correlations inflate the effect size of a non-causal genetic vari-
ant, thus leading to false positive [13] identifications. The second challenge in parsing
the genetic risk is that most of the strongly associated genetic variants are located in
the non-coding [44] region of the DNA. The variants affect the regulatory factors [45]
of a gene, which results in alterations in the gene expression levels or interactions with

other genes. These complexities associated with genetic data necessitate the need to

develop new frameworks to parse the genetic risks and identify target variants and



underlying biological processes.

1.3 Challenges With Imaging Genetics Studies

Modeling Interaction Between Imaging and Genetics: The first set of chal-
lenges in imaging and genetics study is to model the relationship between imaging and
genetics data. Initial approaches [28-30] used a polygenic risk score model to explain
the observed phenotype using the genotype data in a linear framework. However,
the polygenic risk score is a cumulative score that does not explain the underlying
biology. For example, two subjects with similar risk scores can have different risk
alleles affecting disorder-relevant biological pathways differently [46]. This issue is
addressed in pathway-driven polygenic scoring [28, 29], but these models require a

priori knowledge of the implicated biological pathways, which is often unavailable.

Despite the shortcomings, the genetic risk score-based studies highlight that multi-
ple genes act in synchrony [38], which ultimately leads to altered neural functioning
of different brain regions. This observation led to a group of bi-multivariate imaging
genetics studies [11, 47, 48] aiming to identify a cluster of functionally related genetic
variants statistically correlated with a network of brain regions. The coherent set of
imaging and genetic biomarkers shed light on the complex interactions between the two
modalities. However, these approaches are not adaptable to increasing data modalities
and often ignore the disease status, resulting in a lack of clinically relevant biomarkers.
We address this shortcoming in a generative discriminative framework. The generative
model combines multiple data modalities, while the discriminative module guides the
framework to find discriminative biomarkers. In addition, we incorporate structural
and biological priors as regularization, leading to robust biomarkers and improved risk

prediction.



Modeling Multimodalities and Non-linear Interactions: The second challenge
in imaging genetics is modeling multiple data modalities in a single framework.
As explained in previous sections, neuropsychiatric disorders are characterized by
heterogeneous phenotypes resulting from a combined genetic effect along multiple
biological processes. As a result, the field is moving towards multimodal imaging
acquisitions [19] to capture different snapshots of the brain, all of which may have
links to the genotype. However, with the growing emphasis on big datasets comes the
challenge of missing data modalities. Traditionally, missing data has been managed [50]

by removing subjects from the analysis, which does not use all the information.

The third challenge in imaging genetics is the simplistic assumption of linearity
between the two data modalities. However, biology is complex, and the path through
which genetics confer risk is often non-linear [51, 52]. This motivates the need to
develop adaptable frameworks that extract non-linear feature representations from

multiple data modalities while handling missing data.

We solve these problems by introducing robust and adaptable autoencoder frame-
works that can successfully combine the non-linear projections of imaging and genetics
data. Our autoencoder frameworks are complemented with classifiers and a Bayesian
feature selection module. The Bayesian module identifies biomarkers, while the

classifier ensures that the biomarkers are clinically relevant.

Parsing the Genetic Information In Data-Driven Models: The fourth set
of challenges involves modeling millions of highly correlated genetic variants in a
data-driven fashion. Traditional and deep learning-based imaging genetics models
use a drastically reduced set of genetic features, often identified by thresholding
GWAS p-values. However, GWAS is a univariate approach that does not consider
the correlation structure across variants. So, a GWAS-guided identification of genetic

variants often does not contain true signals [43]. The works of [39, 53-55] provide a



solution to find target variants using Bayesian and frequentist approaches of variable
selections. However, these models also fail to identify robust targets for polygenic

traits due to spurious effects from non-target variants.

The GWAS sub-selection step restricts the use of complete genetic information. In
terms of scale, a raw dataset of ~ 300K genetic variants is reduced to 1K SNPs. In
contrast, neuropsychiatric disorders are polygenetic, meaning that they are influenced
by numerous genetic variants interacting across many biological pathways. Pruning
out the genetic information effectively removes the information of the downstream
genetic effects. Within the genetics realm, there is a vast literature that associates
genetic variants and genes to different biological pathways [56]. The works of [57, 58]
have used this information to design a sparse artificial neural network that aggregates
genetic risk according to these pathways in order to predict a phenotypic variable.
While an important first step, their ANN contains just a single hidden layer, which

does not account for the hierarchical and interconnected nature of the biological

processes.

The above challenges highlight the need for data-driven models that can identify
target variants in complex genetic architectures and provide a strategically regularized

framework that encodes millions of genetic variants.

1.4 Contributions of This Thesis

This thesis aims to provide data-driven solutions to handle the multifaceted nature of
psychiatric disorders while identifying target variants and providing insights about
the implicated biological processes. However, integration and parsing of imaging
genetics data has many challenges: high data dimensionality, complex interactions,
and unknown causal factors. We approach these problems in three steps. First,

we build biologically regularized models to extract discriminative patterns from the



data. Second, we combine domain knowledge about the modalities with data-driven
learning models. Third, we evaluate these models on multiple studies and quantify
their reproducibility and performance. This thesis makes four major contributions in
each of these stages to push the boundary of machine learning research in imaging

genetics.

o A generative discriminative approach that uses matrix decomposition to model
complex interaction between imaging and genetics. The model is regularized

and guided by clinical labels, resulting in discriminative biomarkers.

o An autoencoder framework to model the non-linear interaction between imaging
and genetics. The autoencoder framework is coupled with a novel Bayesian

feature selection layer to identify potential neuroimaging and genetic targets.

o A Deep Bayes variation approach to parse the landscape of genetics and find

potential target variants from genome wide association studies.

o A graph-based deep neural network that can encode millions of genetics variants
using prior biological knowledge of SNP-gene and gene-pathway interactions. We
use this model to integrate multimodal imaging and genetics data and extend it

to create interpretable and non-linear genetic risk scores.

1.5 Thesis Outline

Chapter 2 provides the background about the data modalities and the existing machine
learning and deep learning strategies to analyze the data. We will also introduce the
deep learning concepts and architectural designs used in this work. Finally, we will

provide the details about our experimental datasets and the preprocessing strategies.

In Chapter 3, we introduce our generative discriminative framework for integrating

imaging and genetic data while performing diagnosis. This work builds upon our



SPIE [59], MICCATI [60] and Neuroimage [61] papers where we explore the interactions

between brain networks and genetic loci for schizophrenia risk prediction.

Chapter 4 extends the model presented in Chapter 3 to incorporate non-linear
interactions between imaging and genetics. This work was originally presented in
conference paper form in [62]. This work introduces an autoencoder framework coupled
with a classifier module. Additionally, we introduce a novel joint feature selection

using a Bayesian approach that provides a posterior feature selection probability map.

Chapter 5 extends our Bayesian approach for feature selection to solve the problem
of finemapping. In this work [63], we introduce a deep Bayes variational model to
approximate the posterior distribution of the causal variants given the GWAS summary

statistics.

Finally, in Chapter 6, we introduce a graph-based convolution model to encode
whole genome genotype data. In this work, we introduce a biological knowledge-driven
regularization strategy that successfully encodes millions of genetics variants in a
robust end-to-end framework. We use this encoding strategy to integrate imaging
and genetics data, which is published in ICLR [64]. Finally, in our ongoing work, we
extend the genetic encoding strategy to create interpretable and non-linear genetic

risk scores.



Chapter 2

Background

2.1 Viewing Neuropsychiatric Disorders through
altered brain activity

Functional Magnetic Resonance Imaging (fMRI) allows us to assess brain activity
in response to a given stimulus or experimental paradigm [3, 4, 65]. It has become
a powerful tool for studying brain abnormalities in patients with neuropsychiatric
disorders. fMRI measures changes in blood oxygenation within the brain. The brain
regions involved in performing a task require more oxygen [66], and to meet this
increased demand, blood flow increases to the active areas. Hence, the neural activity
induced by an experimental stimulus is highly correlated with changes in blood flow
and oxygenation [65], and fMRI helps us to detect those changes. Hemoglobin is
diamagnetic when oxygenated but paramagnetic when deoxygenated. This difference
in magnetic properties is captured by a T2*-weighted [(7] protocol that measures
changes in oxygenation over the course of the scan. The primary advantage of fMRI
is its ability to provide superior temporal and spatial measures of brain activity in

response to an experimental stimulus.



2.1.1 Functional Localization and Brain Networks Identifica-
tion

Generalized Linear Model (GLM): Statistical analyses of the fMRI are geared

towards identifying brain regions that activate or deactivate in response to stimuli.

The most popular approach to studying the individual brain is the Generalized Linear

Model (GLM) [8], which represents the fMRI data as a linear combination of the

stimuli onsets and responses across time. Mathematically, the fMRI time-series signal

from a spatial location ¢ in the brain is presented as:

fi=AB, +¢ (2.1)

where f;, € R"™! is the time series signal of T time points from location i, A € R"*"
is a design matrix whose columns capture the onset of the experimental stimuli,
€; is additive Gaussian noise, and 3, is the response of the brain from location 4.

Mathematically, we can estimate B, by estimating the least-squares solution. [10]:
Bi = (ATA)_IAsz’ (2.2)

As shown in Fig. 2-1 the estimated coefficients 8 indicate the response of a region i,

thus informing us of the role played by a region ¢ within the brain.

The GLM model evaluates the correlation between the fMRI timeseries of each
voxel with the experimental stimuli but fails to capture higher-order relationships [11—
13]. In addition, GLM models fail to provide the underlying brain networks [6§]
that often respond synchronously to a task stimulus. This problem is addressed in
Independent Component Analyses, which can find task-related higher-order brain

networks from fMRI time-series signals.

Independent Component Analysis (ICA): ICA models assume the fMRI signal

is a linear mixture of spatially independent source signals. The goal of ICA is to

10



Observed Design Activation maps

Signal from locationi  matrix of location i
: - -
Z - ”
/

A

b1

Time
|

\:M I/ I

Figure 2-1. A Generalized Linear Model (GLM). The observed signal is the fMRI time-
series signal location 7. The design matrix contains the input experimental stimulus. The
estimated coefficients /3; capture the brain activation in response to the stimuli.

separate the independent source signals using higher-order statistics. Prior works
have shown that the independent components [11-13, 69] group all brain regions with
synchronized signals, thus identifying temporally coherent functional networks (FNs).

Mathematically, the ICA framework can be written as:

F=MS (2.3)

where we concatenate the fMRI timeseries signals for L locations into a matrix
F=1[f,....f;]. S € R are S independent source signals spanning across L
regions and M is the mixing parameter of the source signals. Eq. (2.3) is similar to
Eq. (2.2), however unlike GLM here both M and S are estimated by optimizing [70,
71] a higher order statistics in a data-driven fashion. Each row of S could give us a
network of brain regions acting synchronously in response to the experimental stimulus.

The independent components have proven to identify higher-order brain states [72].

The main drawback of ICA is that it does not naturally generalize to multiple
subjects. Traditionally, ICA is done on a single subject and a post-hoc analysis [13] is

required to map the independent components across samples. This complexity is in
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Figure 2-2. The spatial brain activation maps obtained from GLM or ICA framework
is passed through univariate tests like t-test to find regions of activity affected by the
disorder.

contrast to GLM models where the design matrix is fixed across samples, which allows
for comparison of the activation maps (3;) across samples. This problem is addressed
in group-ICA [69] where subjects are concatenated in the temporal directions, and an

ICA is performed to find common spatial activation across groups.

2.1.2 Group Analysis

The group-level analysis in fMRI can be divided into two main categories. The first
category extracts spatial patterns of brain activation from each subject using the
GLM or group-ICA framework and passes it through a mass univariate testing [73, 74]
framework for finding group-level differences. Figure 2-2 shows the general strategy
for performing mass hypothesis testing across samples. Although these methods are
widely used, they fail to capture multivariate interactions [75] across the brain. In
addition, the results of the univariate techniques also vary widely across different

subsets of data, resulting in low reproducibility.

The second category uses machine learning models to optimize for group separability

using the brain activation maps. For example, the Support Vector Machine (SVM) [76,

12



77], constructs a high-dimensional set of hyper-planes that maximally separates
the data into multiple categories. Different ensemble-based methods like random
forest (RF) [78], and neural networks [79, 80] have shown their ability to learn
multiscale features while enhancing classification accuracy. While these methods can
successfully capture multivariate interactions with high generalization accuracy, they
treat brain activations as an arbitrary collection of features. As a result, the patterns

implicated by these methods can be difficult to interpret.

2.2 Genetic Implication of Neuropsychiatric Disor-
ders

The genetic susceptibility of neuropsychiatric disorders like schizophrenia and autism
is complex, resulting from the combined effects of multiple alleles [81, 82]. The allelic
changes in the DNA can be measured as Single Nucleotide Polymorphisms (SNP),
or Structural Variants (SV). SNPs are germline substitutions of single nucleotides
in the genome that are present in a sufficiently large fraction of the population. In
comparison, SVs capture changes in wider chromosomal regions and may potentially be
responsible for changes in gene structure, resulting in significant phenotypic effects [33].
In this thesis, we will use SNPs as our genetic data modality to investigate their effect

and interactions with brain activation in neuropsychiatric disorders.

2.2.1 Single Nucleotide Polymorphisms (SNP)

SNPs are captured as alterations of nucleotides in the DNA [84]. The DNA consists
of two polynucleotide chains that coil around each other to form a double helix. At
every location of the DNA, we have a pair of the following four nucleotides: Adenine
(A), Cytosine (C), Guanine (G), and Thymine (T). This pair of nucleotides can be
grouped as homozygous major (AA), heterozygous (AB), and homozygous minor

(BB) alleles, where A represents a major allele and B represents a minor allele. The
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homozygous major allele consists of two major alleles; the heterozygous allele consists
of a major and a minor allele; the homozygous minor allele consists of two minor
alleles. Mathematically, SNP data at a locus is coded as {0,1,2} for AA, AB, and
BB, respectively. The allelic configuration of the DNA captured by the SNP data

provides us with the complex genetic architectures of a population.

2.2.2 Genome Wide Association Studies (GWAS)

GWAS [85] investigates the effect of each SNP on the outcome. Let’s assume y € R}
is an observed phenotype across N subjects. The genotyped SNP data across M
variants are encoded as {0, 1,2} and represented by a matrix G € RY*M They are
further normalized so that each column has a mean 0 and variance 1, i.e., % > Gij=0
and % > G?j = 1. GWAS fits a linear regression between individual SNP and the

observed phenotype using the following framework:
1
y=gfi+e e~ N (o, ]1) (2.4)
T

where g, € RY*! is the i-th SNP information across N subjects, §; is the SNP effect,
y is the observed phenotype data and e is additive Gaussian noise with mean 0 and
variance % The effect size 5; can be estimated [86] as the following:

1

a7 2.5
i=N9iY (2.5)

b
In GWAS analyses, the effect sizes are normalized by their standard error to generate
a z-score and a p-value. The z-score is generated as:
=Dt (2.6)
SE(B;)
T T
= ./—q" 2.7
VN9 Y (2.7)
where SE(3;) is the standard error of the effect size 3;. The z-scores across all the

SNPs can be compactly represented as z = \/%GTy
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2.2.3 Identifying Target SNPs Based On GWAS Results

2.2.3.1 Challenges of GWAS

Genome-wide association Studies (GWAS) provide a natural way to quantify the
contribution of each genetic variant to the observed phenotype [85]. However, the
univariate nature of GWAS does not consider the correlation structure shared between
the genetic variants, which arises due to low genomic recombination of nearby DNA
regions [87]. Consequently, strong correlations can inflate the effect size of a non-causal
genetic variant, thus leading to false positive identifications [13]. Mathematically, we
can show this by assuming that the observed trait can be represented by a linear sum
of causal genotypes. Following the same mathematical notation defined in previous
sections, let’s assume y € RV*! denote a vector of (scalar) quantitative traits, and G

denotes the genotype data. The quantitative trait is generated as follows:
1
y—GB+e ewN(O,]In>, (2.8)
T

where 8 € RM*! is the true effect size with 0 in non-causal locations and non-zero in
causal locations, € € RV*! is additive white Gaussian noise with variance %, and Iy
is the V x N identity matrix. Under this generative assumption, the estimated effect

sizes given in Eq 2.6 can be written as:

~ non-causal 1 T
i ~N9iY
1
= NQJTGB we replace y according to Eq. (2.8)
1 .
) (2.9

i€ CausalSet

~ non-causal
where B?OH “ s the effect size of the j-th non-causal variant, 8 is the true effect

sizes of the variants with 0 in non-causal locations, (i, 7) is the correlation between
the j-th non-causal variant and i-th causal variant, and S, is the true effect of the
i-th causal variant. Eq. (2.9) captures the inflation of the effect sizes of non-causal

variants due to the correlation with the causal variants.
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2.2.3.2 Finemapping Approaches

Fine-mapping [10, 88] addresses this problem by analyzing the correlation structure of
the data to identify small subsets of causal genetic variants [38, 89]. These subsets,
known as credible sets, capture the uncertainty of finding the true causal variant
within a highly correlated region [90]. Unlike p-values, the corresponding posterior
inclusion probabilities (PIPs) computed during fine-mapping can be compared across

studies of different sample sizes.

Heuristics Based Finemapping: Traditional fine-mapping methods use a penal-
ized regression model to predict the output phenotype based on the collection of
genetic variants [91, 92]. Popular regularizations like LASSO [93] and Elastic Net [92]
simultaneously perform effect size estimation while slowly shrinking the smaller effect
sizes to zero. The drawback of penalized regression models is that they optimize
phenotypic prediction and, due to the correlation structure, do not always identify

the true causal variants.

Bayesian Finemapping: The second category relies on Bayesian modeling. Here,
the phenotype is modeled as a linear combination of the genetic variants, with
sparsity incorporated into the prior distribution for the model weights. Approximate
inference techniques, such as Markov Chain Monte Carlo (MCMC) [51] and variational
methods [94] have been used to infer the effect sizes, PIPs, and credible sets. While
these approaches represent valuable contributions to the field, they require raw
genotype and phenotype information, which raises privacy and regulatory concerns,
particularly in the cases of publicly shared datasets. MCMC sampling also requires a

burn-in period, which adds a substantial (100X) runtime overhead.

Recently, fine-mapping approaches [39, 95, 96] have moved towards using summary

statistics, which can be easily shared across sites. These approaches use the GWAS
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results to estimate the posterior of the causal configurations. This posterior is estimated

using the Bayes rule:

Plclz. Sy) = P(z|Xx,c) P(c)

- X P (2[Ex,d) P(c) (210

where c is a binary vector denoting the location of causal variants, Yx = %GTG is
the SNP-SNP correlation matrix, z is the z-score estimated from GWAS, and Y7;(-) is
the sum over all possible causal configurations. In the above expression, the likelihood

term P (z|Xx,c) follows a normal distribution and can be obtained by combining

Eq. (2.6) and Eq. (2.8).

z= \/?GT (GB + €) where e ~ N (0, lﬂn> (2.11)
n T

— P (z|B) =N (z; V(N7)BZx, Ex) (2.12)

However, estimating Eq. (2.10) is difficult because the denominator is intractable
with increasing number of causal variants. The works of [39, 86, 95] solved it by
defining a prior over 8 ~ N (O, %UQdiag(c)) and using a stochastic or exhaustive
search to identify the posterior probabilities of the causal configurations. However,
exhaustive search-based methods are restricted by the number of assumed causal
variants, leading to an exponential increase in the dimensionality of the approximate
posterior distribution. Stochastic search approaches [95] are computationally less
expensive, but, by construction, they cannot handle nontrivial effects from spurious
non-causal variants. The most recent contribution to fine-mapping is SuSiE [53, 96],
which uses a different prior and estimates 3 as the sum of “single effects”. These
“single effect” vectors contain one non-zero element representing a causal variant and
are estimated using a Bayesian step-wise selection approach. SuSiE provides a simple
framework to robustly estimate PIPs and credible sets; however, there is limited
evidence for its performance, given the presence of spurious genetic effects. Such
scenarios can appear due to polygenicity of the trait, trans-interactions of variants, or

varying correlation structure of the genomic region.
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Our approach in Chapter 5 deviates from the strong assumption that non-casual
variants have zero effects. As a result, our approach provides a robust framework that
can account for infinitesimal effects from non-causal variants in polygenic traits and

spurious effects from non-causal variants due to interaction artifacts.

2.2.4 Polygenic Risk Scores (PRS)

The genotyped SNP data can also predict a phenotype [97]. Polygenic Risk Score
(PRS) [98] measures the genetic liability to a disease or trait based on the genotype
data of an individual. PRS are estimated as a weighted sum of the genotype data,
where the weights are obtained from a GWAS. On a high level, PRS can be assumed
to provide an individual-level proxy of genetic liability to a trait. Mathematically,

PRS from an individual subject is estimated as the following:

. Ej G[n>]] *Bj
N 2% M

Sn (2.13)

where s, is the PRS for the n-th subject, G € RY*M is the genotyped SNP data, Bj is
the estimated effect size obtained from an independent GWAS, and M is the number
of SNPs used to calculate the PRS. In addition to phenotype prediction, PRSs are
suitable for various applications, such as identifying shared etiology among traits [99],
gene-by-environment [100], and gene-by-gene interactions. However, the polygenic risk
score collapses all the genetic information to a scalar value, thus ignoring the complex

interactions between variants.

Recent approaches parse the genetic risk based on their involvement in different
pathways [28, 101, 102]. For example, in schizophrenia, SNPs related to the genes
linked with the biological process, glutamatergic signaling, can be used in creating
pathway-specific PRSs. In Chapter 6, we take a similar strategy to encode the
genotype data. However, instead of handcrafting the pathway-specific scores, we use

graph-based models to prioritize pathways and create scores in a data-driven fashion.
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2.3 Joint Analyses of Imaging Genetics

In previous sections, we have introduced the prior works in imaging and genetics that
try to investigate each modality separately. However, the complex traits inherited
in neuropsychiatric disorders encompass interplay between multiple genes [81, 82]
that contribute to biological processes like neurogenesis, transcriptional regulation,
dopaminergic and glutamatergic signaling. Therefore, disentangling the neural mecha-
nisms [25] and pinpointing genetic variations [17] separately provides an incomplete
picture of the underlying disorder [26, 27].

Imaging-genetics is an emerging field that tries to merge these complementary
viewpoints [103]. The imaging features are often derived from structural and functional
MRI (s/fMRI), and the genetic variants are typically captured by Single Nucleotide
Polymorphisms (SNPs). Data-driven imaging-genetics methods can be grouped into

three main categories.

2.3.1 Regression Based Approaches:

Initial approaches [104—106] in imaging-genetics evaluated the association between
each SNP and brain ROI pair in a linear framework. Such pairwise association analysis
results in a large number of hypothesis tests, leading to problems associated with
multiple testings [107]. Furthermore, the resulting p-values are not independent
because of spatial correlation in the imaging data. This problem is addressed in the
work of [47, 108] where multiple SNPs are used to predict the multiple brain regions
in a single multivariate linear framework. The general strategy of these models is to

minimize the following loss functions:
. . T ‘
min 2@: l|2; — W g,|| + \R(W) (2.14)

where 4; € R®*! is the observed phenotype from R brain regions, g, € R™*! is the

RMXR

genotype data from i-th subjects, W € is the multivariate regression coefficients,
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and R(-) is a regularization penalty over the regression coefficients. Additional prior
are imposed over W in the form of regularization that control for interaction between
genetic variants or brain regions. For example, [17] use a group sparsity penalty that
ensures that a sparse set of SNPs localized to genes influence all the brain ROIs
similarly. [109] took a different approach and enforces low rank approximation over
W. Both these approaches are geared towards finding a common pattern that can

capture the interplay between a set of genetic variants and brain ROIs.

While the regression-based models are simple to implement and easy to interpret,
penalized regression models do not naturally incorporate the effect of a disease. As
a result, the identified biomarkers may not be relevant to the underlying disorder.
In Chapter 3, we demonstrate how the penalized regression-based models could be

extended to model imaging-genetics data while maintaining clinical interpretability.

2.3.2 Bi-multivariate Approaches:

One leading hypothesis in imaging genetics is that both imaging and genetics data
share a common latent space. Under this hypothesis, multiple bi-multivariate models
[11, 12, 14, 110] try to project the imaging and genetics data to a lower dimensional
space and align them by maximizing the correlations. Canonical Correlation Analysis
(CCA) and parallel Independent Component Analysis (p-ICA) are the two leading

approaches in this space.

Canonical Correlation Analysis (CCA): Canonical Correlation Analysis (CCA) [110-
112] finds bivariate associations between the imaging and genetics data. These canoni-
cal coefficients are obtained by maximizing the following function:
{u],v]} = maxy, ., corr(I"u;, G"'v;)
where {u;,v;} are the orthonormal basis vectors, and across N individuals we have

concatenated the patient activations maps as I = [41,...,%x], the genetic variants as
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G = [g;,...,9x]. These basis vectors form a low dimensional space where the two
data modalities are maximally correlated. In addition, the basis vectors provide us
with a cluster of functionally related SNPs that are statistically correlated with brain
ROIs. However, the high dimensionality of imaging and genetics data often leads to
model overfitting and a lack of robust biomarkers. Sparse CCA (SCCA) [110-112]
addresses this problem by incorporating the Least Absolute Shrinkage and Selection
Operator (LASSO) constraints on the basis vectors {u, v}. These sparsity-inducing
priors lead to robust and interpretable biomarkers. The s-CCA models are further
extended [113, 114] to model diagnosis labels leading to meaningful and clinically

relevant biomarkers.

The outputs of CCA-based models can also be used for phenotype predictions [114].
s-CCA identifies a sparse set of imaging and genetic features that can be combined
and passed through a classifier for prediction. Additionally, the lower dimensional

projections |3 U, g%V} can also be used a feature vectors in a classifier model.

The main drawback of the CCA-based model is that it is hard to add more data
modalities. However, the field is moving towards multimodal imaging acquisitions to
capture different snapshots of the brain, all of which may have a link to the genotype.
To address this issue, in Chapter 3 and Chapter 4, we use a dictionary learning

framework and autoencoder to model multiple data modalities.

Parallel Independent Component Analysis (pICA): Parallel ICA (pICA) is
an alternative method that uses statistical independence to identify a set of basis
vectors for each modality [115]. Compared to CCA, pICA can extract higher-order
dependencies beyond linear correlation [13, 115, 116]. Parallel ICA (p-ICA) decomposes
the imaging and genetics data into independent but interrelated networks. This
is done by jointly maximizing multiple ‘cost functions,” one of which specifies the

independence among networks in each of the data sets and another term that maximizes

21



the correlation among pairs of networks across data sets. Formally, let I € R®*N

is the imaging data and G € RM*" is the genetic data collected from N subjects.

Mathematically, the pICA framework can be written as:
I=SX and G=WZ

where S, W are independent source matrices and the X, Z are loading matrices
whose cross-correlation is maximized. Parallel ICA extracts the correlated pair of
components from the two modalities. The importance of each component can be
further estimated by computing p-values of the association between the loading scores

and the disease label.

Similar to CCA, pICA identifies a robust set of biomarkers that can be used in a
classifier framework for disease prediction. The drawbacks of pICA are also similar to
CCA. In pICA, the entire model and optimization procedure must be changed to add

new modalities and handle missing data.

2.3.3 Deep Learning Methods

The third category for imaging-genetics uses deep learning to link the multiple view-
points [79, 80, 117, 118]. Unlike traditional methods, deep learning can automatically
learn complex representations from data [79, 80, 119]. These techniques have be-
come the state of the art for analyzing fMRI data sets, resulting in performance
improvements in diverse fMRI applications. Deep learning is less common in the
genetics literature due to the high dimensionality and unstructured nature of the data.
However, with the exponentially increasing volume of genomics data, deep learning

has proven to be a useful tool for multiple genomic modeling applications [117].

Deep learning models allow us to capture non-linear interactions between imaging
and genetics data. Usually, the goal of deep learning is to approximate an optimal

function y = f (I, G) with a succession of non-linear transformations. The optimal
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function f(-) is solved in imaging-genetics using one of the following three approaches.

Artificial Neural Network (ANN): ANN is the simplest form of neural network,
which consists of a sequence of fully connected perceptron layers. Each layer consists of
a linear transformation followed by a non-linear activation. Formally, let '™} € R4

is a d;_; dimensional input at layer [. The output of the layer is given by:
h' = ¢ (Wh') (2.15)

where h! € R%™*! is the output of I-th layer, W € R™*%-1 is the weight matrix, and
¢ () is a non-linear activation function. The non-linear activation function is usually

modeled as a sigmoid, tanh, ReLU [120], or PReLU [121] function.

ANNSs have been widely used to extract complex representation patterns [122] from
imaging and genetics data. In the imaging domain, ANNs [123] have been used to
model brain activation maps, cross-sectional cortical thickness, or brain volumes to
predict the clinical phenotypes of Autism, schizophrenia, and Alzheimer’s. However,
ANNSs are not very popular to model genotype SNP data due to high dimensionality
and unstructured nature of the data. With high data dimensionality, ANNs tend to
overfit. The works of [57, 58] have tried to solve this issue by developing a sparse
artificial neural network that aggregates genetic risk using knowledge of gene-pathway
interactions [56, 124]. While an essential first step, their ANN contains just a single
hidden layer, which does not account for the hierarchical and interconnected nature of

the biological pathways.

Autoencoders: Autoencoders [125] are direct applications of ANN. An autoencoder
consists of an encoder branch and a decoder branch. Traditionally, the encoder
and decoder branch is made of ANNs. The encoder branch extracts a non-linear
lower-dimensional projection of the input data, and the decoder branch reconstructs

the input data from the lower-dimensional projections. The decoder branch acts as
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a regularizer, which ensures that the encoded representation contains informative
information about the input. As a result autoencoders are widely used for denoising
and extracting robust representations from the input data. Traditionally, autoencoders

are trained by minimizing the following reconstruction loss:

min D Min =D (E (in; 9) ;) || (2.16)

where 1,, is the input features from subject n, £(+; ¢) is the encoder branch parametrized
by ¢, and D(+; «) is the encoder branch parametrized by «. The parameters of the

autoencoder are training using backpropagation.

Autoencoders have direct applications in imaging genetics studies. Firstly, the
autoencoder provides a natural way to integrate multiple modalities [126, 127] simply
by adding new encoder-decoder branches. Mathematically, a new branch will introduce
another term to the loss function but does not alter the optimization procedure (e.g.,
backpropagating gradients). Second, missing data can easily be handled [128] by
freezing the affected part of the network and updating the remaining weights. This
simplicity is in stark contrast to the classical methods, where the entire model and
optimization procedure must be changed for each new modality and missing data
configuration. Third, the latent encoding provides a data-driven feature space that
can be used for patient/control classification. Again, this is in contrast to classical

approaches, which are highly dependent on hand-crafted feature.

One main drawback is that traditional autoencoders lack interpretability. So, their
application is limited in imaging genetics. Recently, interpretable Al has provided us
with tools to compute feature importance for interpretability. These feature importance
maps can be used to identify imaging and genetic biomarkers. However, these models
often rely on heuristics based on the gradient of a loss function [129] or the importance
of a feature to the downstream task [130]. In addition, these approaches do not provide

a probabilistic measure of a feature being causal or not. Instead, they provide an
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importance score dependent on the training data and cannot be compared across

replication experiments.

In this thesis, we address these issues by developing an interpretable autoencoder
that can simultaneously perform feature selection and integrate multiple data modali-
ties. Our feature selection is based on a Bayesian framework, which results in robust

probabilistic measures of feature importance maps.

Graph Neural Networks: Graph convolutional networks (GCNs) [131] provide a
natural way to leverage the high-dimensional and interconnected relationships in the
data. GCNs provide a strategy to combine information based on the neighborhood
nodes in a graph. Their effectiveness is widely popular to model network structure
in the brain [132]. They are also popular in protein structure prediction [133], drug
discovery [134], and gene-gene interactions [135]. In imaging and genetics, a graph
provides a natural way to capture the interaction between different components. For
example, in imaging, the node in a graph could represent the activation of a brain

region, and in genetics, each node could represent a gene or biological pathway.

The graph convolution operation provides an iterative strategy to transfer informa-
tion between nodes. This message-passing operation is the key component of GCNs.
Similar to CNN, multiple layers of message-passing operation provides a way to com-
bine low level features to generate high-level feature representations. Mathematically,
the message-passing operation can be shown in the following way:

hH(i) = ¢ ( > E'GHRGW + @hl(i)Ws) (2.17)
JENT()

where h'(i) € R™" is signal for node i at stage I, W' € R%"*%+1 is the convolu-
tional filter between stages [ and (41, f, is the self-influence for node t, W, € R%*%+1
is the convolution filter for self loop, and ((-) is the nonlinearity. The summation

in Eq. (2.17) aggregates the influence over all neighborhood nodes of i. In GCNs,
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the convolutional weight filters are shared across nodes, which results in restricted

parameter space and prevents overfitting.

The traditional graph convolution networks are further extended to incorporate
learnable edge weights using graph attention. This strategy allows to track the infor-
mation flow through the graph [136]. The attention focuses on the most discriminative
set of interactions between the nodes, often leading to better generalization on unseen
data. Graph attention has been successful in biological applications, like predicting
disease-RNA association [137] and essential gene prediction [138]. These models are
often coupled graph pooling operations that allows us to aggregate information at
each level of the hierarchy [139—141]. During standard graph pooling, the nodes at
each level are clustered to form a smaller subgraph. These clusters can be obtained

via deterministic algorithms [139] or be learned during training [140, 141].

We utilize graph attention networks coupled with graph convolutions to encode
millions of genetic variants using a sparse graph of gene-pathway interaction. The graph
contains a hierarchical structure pre-defined by our knowledge of gene ontology [56,
142]. The sparse hierarchy allows us to combine DNA-level information through
strategically defined layers of SNP-gene interaction and gene-pathway interactions.
We use graph convolution to capture the information flow through the graph and
graph attention to learn the salient edges associated with the disorder. This strategy
provides a robust framework to explore the biological mechanism associated with a

disorder.

2.4 Data: Acquisition and Preprocessing

In this thesis, we investigated two neuropsychiatric disorders, autism and schizophrenia.
Our datasets have been obtained from multiple sites, and in this section, we will

provide a brief background about data acquisition and preprocessing.
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Figure 2-3. Left The experimental paradigm of the N-Back task. The top row shows a
sample response for NO-Back and the bottom row shows a sample response for N2-Back.
Right The experimental setup for the SDMT task.

2.4.1 Case Control Study of Schizophrenia

We validate our frameworks on a task fMRI and genetic data acquired at two different
sites from two different study populations. The first dataset was provided by researchers
at the Lieber Institute for Brain Development (LIBD) in Baltimore, MD, USA. The
second dataset was acquired at the University of Bari Aldo Moro, Italy. The data

collection procedures and pre-processing were consistent across sites.

Neuroimaging Data: As shown in Figure 2-3, our datasets include two fMRI
paradigms that have been previously used to study schizophrenia [3, 4]. The first
paradigm is a block design working memory task (N-Back). During the 0-back blocks,
participants were instructed to press a button corresponding to a number displayed on
the screen. During the 2-back working memory blocks, participants were instructed
to press the button corresponding to the number they had seen two stimuli previously.
We use a standard General Linear Model (described in Section 2.1.1) to estimate the
activation coefficients from each block separately. The final contrast is the subtraction
Bo—pack — Bo—back- Our region-wise inputs are the average of these contrast values
across all voxels in each particular region. The second paradigm is a block design

declarative memory task (SDMT), which involves incidental encoding of complex
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aversive visual scenes. Similar to the N-back analysis, we estimate the coefficients of
association from a generalized linear model. The SDMT contrast map is the subtraction
Baversive — Berosshair- OUr region-wise inputs are the average of these contrast values
across all voxels in each parcel of the brain. Further details for generating the contrast
maps can be found in [8]. The case-control groups were matched on age, IQ (WRAT
score), years of education, and in the case of N-Back, the percent correct response for

the 2-Back task.

All fMRI data was acquired on 3-T General Electric Sigma scanners (EPI, TR/TE
= 2000/28 msec; flip angle = 90; field of view = 24 cm, res = 3.75 X 3.75 x 6mm? for
NBack and res = 3.75 x 3.75 x 5mm? for SDMT). fMRI preprocessing included slice
timing correction, realignment, spatial normalization to an MNI template, smoothing
and motion parameter regression. SPM12 was used to generate activation and contrast
maps for each paradigm. We use the Brainnetome atlas [113] to define 246 cortical and
subcortical regions. The input to our model is the average contrast map over these
246 ROIs. As fMRI data are often subject to noise, we average the activation across
voxels in a single region to construct our model input. This averaging mitigates the
impact of noise and helps us to find meaningful patterns across groups. In addition,
we regress out the effect of age, IQ (WRAT reading score), years of education and
percent-correct on the 2-back task for the N-back dataset, and we regress out the
effect of age, IQQ (WRAT reading score), years of education for the SDMT dataset.
Regressing out the Nback performance removes biases in the data that may be due
to cognitive performance per se. However, the SDMT contrast used in this work is
specific to the encoding phases (aversive scenes vs. crosshair), so we do not regress
retrieval performance. The subjects were not informed about the retrieval portion
beforehand, so the encoding is incidental [3]. In all cases, we estimate the regression

coefficients only from the training set and use them for the test set.

28



Genetic Data: Genotyping was done using variate Illumina Bead Chips including
510K/ 610K /660K /2.5M. Quality control and imputation were performed using PLINK
and IMPUTE2, respectively. The resulting 102K linkage disequilibrium independent
SNPs (r? < 0.1 in 500kb) are used to obtain our genetic data (see [30] for further
details). In our works, we use a GWAS to generate gene scores and polygenic risk
scores. This study was done on 36,989 schizophrenia patients and 113,075 neurotypical
controls by the PGC Consortium. Further details about this study can be found in

[17].
2.4.2 Case Control Study of Autism Spectrum Disorder (ASD)

The final part of this thesis explores the genetic foundation of autism. We explore
the interactions between genes and pathways to parse the genetic risk associated with

autism. Our genetic data for autism are collected from two studies:

Simons Simplex Collections (SSC): DNA of individuals from Simons Simplex
Collection (SSC) families were genotyped for a million or more single nucleotide
polymorphisms (SNPs) on one of three array versions - [llumina 1Mv1, [llumina
1Mv3 Duo, or lllumina HumanOmni2.5M. Members of each family were analyzed
on the same array version. All families were simplex [144], with only the proband
being affected by ASD, as assessed by evaluation of family history. Probands, ages
4 to 18, were diagnosed using the ADI-R [145] and ADOS [146] as administered by
expert clinicians. Initial preprocessing and imputation are done by the RICOPILI

pipeline [16, 147]. The resulting ~ 2591 families are used as inputs to our models.

Autism Centre of Excellence (ACE): Families were recruited by the Autism
Centre of Excellence (ACE) Network. Subjects were genotyped on the Illumina Omni-
2.5 platform using standard manufacturer protocols (Illumina, San Diego, CA). All

DNA samples were hybridized and scanned on the [llumina iScan to minimize batch
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effects and variation. All subjects had a genotyping call rate > 95%. Genotyping data
were analysed by PLINK v1.0731 using the forward strand and confirmed the reported
sex and sibling relationships of all subjects. Autism diagnoses were derived from a
combination of assessments on the Autism Diagnostic Interview-Revised (ADI-R) [8]
and/or Autism Diagnostic Observation Schedule (ADOS) [146] and clinician’s best
judgment according to standard protocols at AGRE [148]. Initial preprocessing and
imputation are done by the RICOPILI pipeline [147]. After imputation, we subselect

346 subjects belonging to ASD and control groups as input to the model.

30



Chapter 3

Matrix Decomposition Frameworks
Parsing Complex Interactions
Between Imaging and Genetics

Initial studies [16, 17, 25] explored the imaging and genetic data separately to pinpoint
neural mechanisms and genetic variants. However, imaging and genetics data contain
complementary information about the disorder. Imaging biomarkers provide insights
into aberrant neural activity. On the other side, genetics data provide the underlying
etiology of the disorder. Prior works [11, 14, 110] have combined imaging and genetics
data to find a set of correlated biomarkers, but they often ignore patient heterogeneity,
leading to clinically irrelevant biomarkers. Other predictive models [114, 119] try to
subselect features and pass them through a machine learning classifier for disease
diagnosis.

In imaging-genetics, dictionary learning models provide a joint approach to com-
bining multiple data modalities in a single framework. Dictionary learning models use
matrix decomposition to represent the observed data as a linear sum of basis vectors.
The adaptable framework can simultaneously extract common data representations
from multiple modalities [150]. Additionally, such models easily incorporate additional

priors over the generative assumptions [151], leading to a robust framework.

In this chapter, we extend the dictionary learning-based models to capture patient
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Figure 3-1. The joint modeling framework to capture brain activity and genetic risk. The
gray box represents the generative part of the model for a single schizophrenia patient.
We captured altered brain activity in the patients as deviations from the population mean.
The major contribution of the anatomical regions to overall deviation are shown as surface
plots in the yellow box. The green box is the predictive part of the model that track the
genetic risk as linear regression.

heterogeneity while finding clinically relevant biomarkers. This chapter will be based
on our published works [59-61]. In Section 3.1, we will introduce a generative-
predictive framework that captures the differences in regional brain activity between
a neurotypical cohort and a clinical population, as guided by polygenic risk scores.
One limitation of this work is that we collapse all the SNP information into a single
scalar value, which cannot consider the interactions between the SNPs. We further
extend this work in Section 3.2, where we combine the raw SNP data with imaging

brain activation maps in a generative-discriminative framework.
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3.1 Aberrant Neural Activity in Schizophrenia and
its Association with Polygenic Risk Scores

Fig. 3-1 represents a overview of our joint modelling approach. The generative part
of our model is very closely related to dictionary learning. The modelling of the
generative part is based on the assumption that the average functional activity of the
clinical group differs from their neurotypical counterparts in certain brain regions,
which can be approximated by a set of sparse basis vectors. We rely on the ¢5; norm
for group sparsity; this norm has been previously used for feature selection and for
localizing quantitative traits to predict cognitive outcomes [17, 152]. However, its
application to identify group-level changes in brain activity while tracking genetic risk
has not been explored. The predictive part of our model is a linear regression model,
where the feature vectors are constructed as projections of the data onto the subspace
spanned by the basis vectors. Here, we assume a linear relationship between the
feature vectors and the genetic risk. Our joint optimization enables us to learn a set
of regions that capture the group differences in brain activity and a set of projection

coefficients, which capture the variability in genetic information across patients.

3.1.1 The Generative Framework

This section provides a formal mathematical description of our generative-predictive
framework. Mathematically, let J denote the number of normal controls, and let
K be number of clinical patients. We assume that the brain has been parcellated
into R ROIs, from which we extract an R x 1 vector i, that quantifies the functional
activation across the ROIs. The inputs to our model are the feature vectors {i;}7_, for
neurotypical controls and {fk}szl for clinical patients, along with the patient-specific

polygenic risk scores {r,, }M_,.
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3.1.1.1 Modelling the neurotypical control population

Throughout our analysis we assume that the brain activation of the neurotypical control
population is distributed across a population mean, s whereas the neuropsychiatric
patient population is distributed across a shifted version of this population mean. So,

we model the functional activation of the control group in the following way:

i; =s+mn wheren(i) ~ iid, (3.1)
where 0 is the variance of the noise associated with the activation of each region.
3.1.1.2 Modelling the neuropsychiatric patient population

We hypothesize that the given neurological disorder manifests as coordinated disrup-
tions over a set of brain regions. Accordingly, our model stipulates that the deviation
caused by the disorder in different brain regions can be approximated by a set of sparse
basis vectors. Unlike the control population the brain activation of the clinical patients
are distributed across a shifted mean s + Ax;. Hence, we model the activation of
region ¢ in patient £k as:
_ s(i when: A(i,-) =0
(i) ~ {88 + A(i,-)xr when: AE?J, ; #0 (3:2)
where A € RF*4 is the set of sparse canonical basis vectors that captures the
contribution of each region to overall activation differences. As seen in Eq. (3.2) if
A(i,-) ~ 0, the mean activation at region i can be well approximated by the neurotyp-
ical mean, s(i), but if A(i,-) > 0 then the patient population has a substantially
different activation contribution at region ¢ than the population mean. Hence, the
matrix A captures the set of brain regions that are substantially affected by the
neurological disorder. Moreover, the feature vector x; captures the patient hetero-
geneity within the cohort. In this model, we assume an additive effect for all the basis

vectors, so we introduce the non-negativity constraint &y > 0 on the coefficients. At a
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high level, our decomposition reduces the data dimensionality while simultaneously

capturing patient heterogeneity:.

3.1.2 The predictive framework

As shown in Fig. 3-1, we use the patient specific coefficients {x;}2, to predict the

genetic risk in a linear regression model. We concatenate the coefficients {x; }_ | into

a matrix X = [z1,...,xx] € R”E and the patient specific risk scores into a vector,
r=[ry,...,7x] € RE*1. We then fit them into a linear regression model:
r~XTb

where b € R%*! is the regression vector. We include an £, regularization on b.
3.1.2.1 The joint model

We combine both the generative and predictive terms into a joint objective, which

can be expressed as a matrix decomposition and regression framework as follows:

J K K
(@1, i, 8,6, A) =D |5 — sz + > |lix — s — Ampllz + A3 Y |Ire — 2 bll2
j=1 k=1 k=1
Subject to: {xp}i, >0
where 7, ||4; — s][3 + X/, ||ék — s — Amy|[3 represents the cost associated with
modelling the fMRI data and A3 &, ||rx — ] b||2 represents the cost associated with

predicting genetic risk. The parameter \3 denotes the trade-off between the data

representation term and the predictive term.

3.1.3 Regularization Penalties

We would like the matrix A to capture a representative set of regions where the
brain activations are affected by the disease. We enforce that by putting a sparsity

constraint across the rows of A. Further we want to model A to implicate a sparse
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set of regions. We enforce this by putting a smoothness constrain across the columns
of A. We combine these two in the form of ¢5; norm which is ||A||21 = i ||A(Z, -]
This norm enforces a smoothness constrain across columns and sparsity constraint
across rows. Further, from an optimization standpoint different scaled result of { X, b}
can lead to the same solution. So, we need to introduce a quadratic penalty over
X as A\ XK ||x||2. Similarly, we also need to introduce a quadratic penalty over
b as \z||b||3 which is similar to ridge regression. Gathering these terms, the final

regularization cost is:
K
Mol Allza + A1 D el + Ao B3
k
Now, the complete cost function takes the following form:

J K K
T (@1, wx, 8,0, A) =3 [i; — sl + > [lin — s — Azil[5+ A3 D [[re — 2 B3
j=1 k=1 k=1

K
+ Mol All2x + A 3 [kl [5 + a3 (3.3)
k

Subject to:  {xx}E_, >0

3.1.4 Optimization Strategy

We optimize Eq. (3.3) via the alternating minimization procedure illustrated in Fig. 3-2,
in which we update each variable independently while holding the others constant.
The process is computationally efficient since that the cost function J(-) is convex
over s, A, xy, and b independently. The variables {s, b} have closed form updates,
and we use an iterative method to update A and x. This optimization strategy is

further described below.
3.1.4.1 Closed form update for s

The global minimizer of s can be found by setting the gradient of J(-) with respect to

s equal to zero. The update for s relies on both the neurotypical and patient imaging
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Figure 3-2. The alternating minimization approach to obtain the set of minimizers.

data:

g 74+ Sk (i — Axy,)
N J+ M

3.1.4.2 Closed form update for b

The regression coefficient of the prediction term also has a closed-form update. It can

also be found by setting the gradient of [J(-) with respect to b to zero. The update is

given by:

b* = NI+ XX H(Xr) (3.4)
where we have concatenated the projections X = [x1,..., k], and clinical scores
r = [r,...,7k]? for convenience. Notice that Eq. 3.4 parallels the least square

regression solution.
3.1.4.3 Optimizing A using fixed point iteration:

The update rule for A does not have a closed form solution due to the ¢; ; regularization
term. However, it can be efficiently updated using a fixed point iteration. In this
method the ¢, norm of each row of A is kept constant to its value from the previous

iteration, leading to the modified objective:

1AG )13

At“—argmmZ||zk—s—AwkHa“°ZzuAt< )l

(3.5)
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Eq. (3.5) has a closed form update for each row of A according to the following

expression:

_ A -1
A6y = I, XT (XXT + o ]1)
2| A, )2

where we have concatenated the observed patient activations {4, }M_, as I =
[51, e ,%K] € REXK for convenience. The proof of convergence for this fixed point

iteration can be found in Wang et al [17].
3.1.4.4 Optimizing x; using quadratic programming

The objective function is quadratic in @; when the other variables are kept constant.
Moreover, the patient-specific projection coefficients decouple into K independent

quadratic equations, which take the form:

* . T T
x; = argmin x; Qxy + ¢’ Ty
Tk

Subject to: Bpxy < dy
The cost and the constraints are computed from the original variables in Eq. (3.3):

Q=A"A+bb"

c=—2(i,—s)’A

The quadratic solvers give us globally optimal solutions for all the patient-specific

feature vectors.

3.1.5 Model Evaluation

3.1.5.1 Baseline algorithms

LASSO: We perform a comparison of our proposed model with LASSO regression,

which assumes a multivariate linear association between the feature vectors {7, } and
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the polygenic risk scores {r}. Mathematically:
=T
r=1 B+ |8l , (3.6)

where T = [i1,...,1y] € RPE. As seen in Eq. (3.6), we estimate the regression
coefficients 3, whose non-zero entries indicate region-wise associations between genetic
risk and functional activation. We threshold the regression coefficients to obtain a

binary vector Iy, € {0, 1}¥*! with the highest region-wise association:

Ilasso(i) =1 if |IB(2)| >0 (37>

=0 Otherwise (3.8)

We use this binary vector to evaluate the performance during boostrapping which we

discuss in Section 3.1.5.2.

Random Forest: We also compare our model with Random Forest (RF) regression,
which estimates a nonlinear association between the features 7, and the genetic scores
rg. It is an ensemble learning method that fits multiple regression trees on random
subsets of the data. The randomness prevents the trees from overfitting and reduces
the error variance while keeping the bias constant. The final prediction is the average
over all of these trees. Here, the importance of each feature is quantified by the change
in error when values of that predictor are randomly permuted. Features with high
importance result in higher change in error. Similar to LASSO, we obtain a binary
vector I,; € {0,1}7! by retaining the top 70% of the features according to their
importance. We quantified the performance through bootstrapping which we describe

in Section 3.1.5.2.

Generative-Predictive Model: The matrix A in our generative-predictive (gp)
framework quantifies the region association strength to each basis network. We

compute a single region measure via the ¢, norm across the bases. These values are
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thresholded to obtain the final I, € {0, 1}V*!.

I6) =1 if ||AG, )|} > o (3.9)

=0 Otherwise (3.10)

where ¢ is the threshold. Similar to LASSO and RF we will use the binary vectors to

quantify the performance of our model across bootstrapped subsets of our data.
3.1.5.2 Performance Metrics

We evaluate the performance of our framework and both the baseline methods in
terms of reproducibility, i.e how consistent the inferred associations are across different
subsets of data. We quantify this performance using two different metrics; (1) Jaccard
Index, and (2) Fractional Occurence.

We evaluate both metrics using bootstrapping. Bootstrapping is a statistical
method that relies on random sampling of data with replacement. The main idea
behind bootstrapping is that inferences that are consistent across random subsets of
the data are more likely to generalize beyond the experiment. In all our methods,
we randomly sampled 90% of our data with replacement for 100 bootstrapping trials.
After each trial, ¢ we obtain the binary vectors {I},,.,, I1;, I;,} as described previously.
So, via bootstrapping we get 100 binary vectors for each of the methods, which we

use to quantify consistency.

Jaccard Index: This measure quantifies the overlap between two vectors, i.e.,

s oty i1 L5, (), (1)
. ) = maX(Card(Ifn), Card(Iﬁn)) (3.11)

(3.12)

where m denotes the method under consideration i.e. {lasso,rf, gp} and Card(I")

denotes the number of non zero elements in the binary vector. Since, we ran 100
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bootstrapping iterations, we have 4950 Jaccard indices for each method. We can assess

both the average consistency and the variability of the Jaccard index across subsets.

Fractional Occurrence: We introduce another metric to identify the consistency
of all the methods. It is defined as the average number of times each region appears
in the binary vector across all the bootstrapping trials. The fractional occurrence of

region ¢ is computed as:
1 loo
F,.(i) = 100 2::1 I,.(7) (3.13)
where m again denotes the method under consideration. Fractional occurence is closely
tied with the Jaccard similarity index. A high fractional occurrence across all the
regions will result in a high Jaccard similarity index and vice-versa. However, the

Jaccard index is essentially a summary statistic over all the regions, whereas fractional

occurrence gives us the individual statistics of each region.
3.1.5.3 Parameter Settings

In our model the hyperparameters {\g, A1, A2, A3} are user specified. We swept over
two orders of magnitude for each parameters and over feature dimensions d =1,...,8.
Our final setting was d = 5, A\g = 6.4, \y = 0.4, Ay = 0.05, and A\3 = 1 based on
optimizing the Jaccard measure. We also swept over different parameter settings for
our baseline methods. In LASSO we looked over two orders of magnitude to identify
the optimal parameter (A = 0.01) that gives the lowest mean square error in Eq. (3.0).
In Random Forest we used 1000 randomized regression trees for predicting the genetic

risk based on optimizing the Jaccard measure.

3.1.6 Experimental Results

We evaluate the performance of our model on a case-control study of schizophrenia

obtained from Lieber Institute for Brain Development (LIBD). The fMRI data is
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collected from the N-back working memory task defined in Section 2.4.1. The groups
were matched for age, 1Q, gender, education, and % correct on the N2-back working
memory task. We use the Braintome atlas [143] to define 246 cortical and subcortical
regions. The time courses for each region was then fed into a Generalized Linear
Model [8] to obtain the activation maps [y for 0-back and 5y for 2-back. The input
to our model is the average contrast map (5 — fp) across the 246 regions. The
schizophrenia polygenic risk score for each individual was calculated as the sum of
the GWAS imputation probability of reference alleles weighted by the natural log of
odds ratio [30]. The genetic risk scores were constructed using SNPs with GWAS

association P-value < 0.05.

Fig. 3-3 illustrates the distribution of Jaccard indices for each method based on five
number summary, minimum of the data, first quartile, median, third quartile, and
maximum. The box plot gives us a good idea of how tightly the data are grouped
and if and how the data are skewed. As seen in Fig. 3-3 our generative-predictive
model demonstrates superior performance in terms of consistency since the median is
significantly higher than the baseline methods. This improvement can be attributed
to the structured form of group sparsity, which forces our model to identify the
regions of differential contrast but sufficient patient variability to capture genetic risk.
In contrast, LASSO and RF identify only the regions of high activity variation in
the patient group, which differs across subsets of data. This behavior leads to low

reproducibility between bootstrapping trials.

From our discussion in Section 3.1.5.2, we know that Jaccard index is strongly
coupled with fractional occurrence. A high Jaccard index should also mean a high
fractional occurrence for each of the regions. Fig. 3-4 evaluates the robustness in
fractional occurrence for each region across all bootstrapping trials. We have colored

each region according to their fractional occurrence and the color bar gives the
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Figure 3-3. The distribution of the Jaccard similarity indices for each of the three methods
are shown.
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Figure 3-4. (a) The fractional occurrence(F,,) of the set of regions identified by our
generative-predictive model. (b) The fractional occurrence(FFy,,s,) of the set of regions
identified by lasso. (c)The fractional occurrence(FF, ;) of the set of regions identified
by random forest. For visualization the regions are colored according to their fractional
occurence. Blue indicates a high fractional occurence, and red indicates a low fractional
occurence. From Left to Right the images are internal surface of left hemisphere, external
surface of left hemisphere, internal surface of right hemisphere, and external surface of
right hemisphere.

associated values. As expected our method shows a higher fractional occurrence in

the identified set of regions than the two baseline methods.
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Table 3-1. The table shows the implicated set of regions identified by our generative-
predictive framework, lasso and random forest regression along with the corresponding
fractional occurrence.

Methods Implicated Regions Fractional Occurrence
Superior Frontal Gyrus (BA - 9) 0.7
Inferior Frontal Gyrus (BA - 44, 45) 0.83
Cenerative- Supramarginal Gyrus (BA - 40) 0.78
Predictive Cingulate Gyrus (BA - 24) 0.63
Precuneus (BA - 7, 5) 0.99
Angular Gyrus (BA - 39) 0.86
Superior Parietal Lobule (BA - 7) 0.9
Superior Frontal Gyrus (BA - 8) 0.38
LASSO Orbital Gyrus (BA - 11) 0.41
Precentral Gyrus (BA - 4) 0.47
Superior Temporal Gyrus (BA - 32) 0.33
Middle Temporal Gyrus (BA - 37) 0.31
Inferior Temporal Gyrus (BA - 20) 0.34
Angular Gyrus (BA - 39) 0.39
Supramarginal Gyrus (BA - 40) 0.37
Postcentral Gyrus (BA - 1,2 3) 0.37
Superior Frontal Gyrus (BA - 8, 9) 0.53
RF Orbital Gyrus (BA - 11, 12) 0.49
Postcentral Gyrus (BA - 1,2, 3) 0.38
Precentral Gyrus (BA - 4) 0.42
Angular Gyrus (BA - 39) 0.38
Postcentral Gyrus (BA - 1, 2, 3) 0.38
Parahippocampal Gyrus (BA - 35, 36) | 0.39
Supramarginal Gyrus (BA - 40) 0.43

Table. 3-1 reports the most consistent regions identified by each method. We
observe that the set of regions identified by our model include superior frontal gyrus,
inferior frontal gyrus, cingulate gyrus, and supramarginal gyrus, all regions well
known to subserve executive function including working memory and implicated in the
pathophysiology of executive cognition deficits observed in patients with schizophre-
nia [4]. In contrast, while few regions of LASSO and RF regression are same as in our
generative-predictive model, other regions identified by LASSO and RF included the

postcentral gyrus, middle temporal gyrus, precentral gyrus, orbital gyrus, and inferior
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temporal gyrus. These regions are not strongly associated with the N-back working
memory task [4]. Taking this as further evidence, along with the lower Jaccard index
and fractional occurrence, we can conclude that both LASSO and RF regression could
partly be capturing noise. However, our generative-predictive framework leverages the
heterogeneity in genetic risk to compensate for noise. As a result we find differential
functional activity in the canonical brain regions underlying cognitive processing

required for working memory.

3.1.7 Discussion and Summary

We have introduced a novel matrix decomposition framework that identifies differential
regional brain activity that is modulated by genetic risk. Our approach uses group
sparsity to select a representative set of features that have a linear association with
the patient-specific genetic risk scores. This strategy provides a richer set of features
that leverages the information of differential functional activity and genetic variation.
Additionally, we leverage genetic patient heterogeneity to identify consistent and
robust region assignments across bootstrapping experiments. We demonstrate that
our generative-predictive model significantly outperforms two baseline methods that
do not leverage patient heterogeneity, in terms of both consistency and robustness.
Our generative-predictive model is not tied to any specific paradigm and can be used
to draw associations between a variety of neuroimaging phenotypes and variables

beyond genetic risk, such as clinical, cognitive, and behavioral scores.

One limitation of our approach is that we identify regions of aberrant neural
activity associated with the genetic risk scores. This approach ignores the interaction
with individual SNPs. Previous studies [11] have found networks of brain regions
interact with multiple SNPs, leading to a fine-grained understanding of the disorder.
In addition, we also fail to account for the disease status to guide our biomarker

identification.
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The next chapter extends this work by investigating the role of single nucleotide
polymorphisms (SNPs) in the neurobiology underlying executive cognitive deficits
in patients with schizophrenia. We will also explore the efficiency of the model in

capturing data variability with multiple imaging data modalities.

3.2 A Generative-Discriminative Framework Ex-
ploring Interactions Between Brain Activity
and Genetic Variants Guided by the Diagnosis
Labels

This work first appeared in [60, 61]. In these papers, we introduce a new optimization
framework that uses disease status to regularize the projection of imaging and genetics
data onto a shared low-dimensional subspace. This projection is done through a coupled
dictionary learning framework. The imaging and genetic bases in this framework
provide interpretable biomarkers in each modality, and the patient specific projections

into this space are used to classify disease status through a logistic regression model.

In contrast to prior works [11, 13, 14], this framework provides an integrated
approach for predicting disease status while finding clinically relevant biomarkers. We
show the capabilities of this model of finding biomarkers in a simulation study under
multiple noise settings. In addition, we provide statistical validation and a replication
study to show the robustness of our approach. Finally, we perform an exploratory

pathway analysis on the genetic biomarkers to identify disease-relevant pathways.

3.2.1 Coupled Generative-Discriminative Framework

Fig. 3-5 presents an overview of our imaging-genetic framework. The inputs to the
model for each subject n are a vector of region-wise imaging features ¢,, a vector
of genetic SNP variants g,,, and patient versus control diagnosis y, € {0,1}. As

seen, our model consists of a generative module and a discriminative module. The
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Figure 3-5. Generative-discriminative framework linking imaging (%,,), genetics (g,,), and
diagnosis (). The generative module captures the brain activations and the genetic data
in a dictionary learning setup, and the discriminative module tracks the disease status using
logistic regression. The classification module also guides the generative process to find a low
dimensional space where the patient specific scores x,, are maximally separated. Therefore,
the basis vectors { A, B} identify biomarkers which capture group level differences between
patients and controls. We have shown representative contributions of these basis vectors
in the form of a Manhattan plot and a colored brain plot.

generative module is closely related to dictionary learning, where we have coupled
the representation of imaging and genetic features by tying them to a common latent
space. The discriminative module implements a logistic regression using the patient
specific scores, thus ensuring that the latent space captures discriminative facets of
the data. Our joint optimization enables us to learn both group level and patient

specific information.

3.2.2 Feature Representation using Dictionary Learning

In our model, we assume that the brain has been parcellated into R ROIs, from which

we extract an R x 1 vector 2,, that quantifies the functional activation across the
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ROIs. Our model assumes that 2, can be represented by a low dimensional projection,

ie.,
in~ Az, st. ATA=1 (3.14)

where the columns of A € R®¥? correspond to the basis vectors and @, are subject-
specific projection weights. The basis vectors capture common patterns across the
population, whereas the projection vector describes subject variability. We incor-
porated an orthogonality constraint over A to remove redundancy from the basis
vectors. We also introduce a graph-based Laplacian regularizer on the basis matrix A

to enforce that the highly correlated brain regions play a similar role in projection:
Tr(A"LA) =) w|la; — a;|3 (3.15)
(i.9)

where a; denotes the i"* row of A, and w;; is the Pearson correlation between the
activation map of region ¢ and region j across the training data. To ensure convexity,

we threshold these correlations to be positive.

The fMRI data is acquired while the subjects perform a standardized task in the
scanner. Hence, most of the data variance will be concentrated in a consistent set of
brain regions across subjects. The orthogonality constraint in our model reduces the
redundancies in the learned bases vectors while simultaneously ensuring that they

capture most of the data variance.

In our model for the genetic data we use a set of LD independent SNPs represented
as g,,. Let G denote the number of genetic variants under study, so the genetic data
has dimensionality g, € R“*!. We represent g, as a linear combination of basis

vectors, i.e.,
9, ~ Bz, (3.16)

where B is the basis matrix. Notice that we have coupled the imaging and genetic

domains by tying them to the same latent projection «,,. We introduce an f5; penalty
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on the basis matrix as regularization. Mathematically,
A
1Bll21 = >_[1b; []2 (3.17)
i=1

where b! is the i row of B. Eq. (3.17) selects a sparse set of genetic variants through
the ¢, penalty across rows. Simultaneously, ¢» penalty across columns preserves the

representational similarity across basis vectors.

We note that even though we use similar representation schemes for the imaging
and genetics data, they are different modalities with different biological interpretations.
In contrast to fMRI data, the SNP data is more variable across subjects, and tends to
be sparse. From a biological standpoint, it is also difficult to decode the downstream
functional relationship between each pair of SNPs. Additionally, standard preprocess-
ing for SNP data involves linkage disequillibrium (LD) correction, which removes much
of the correlation between pairs of SNPs. Therefore, we have not made additional
orthogonality assumptions. Instead, we use an ¢, norm to select a sparse set of
relevant SNPs across the projections. From an optimization standpoint the SNP data
has much higher dimensionality than the imaging data. An orthogonality constraint
over the high dimensional SNP data would make the optimization unstable. Since
our fMRI activation maps are based on a region parcellation, rather than voxel-wise

analysis, we circumvent the issue.

3.2.3 Diagnosis Prediction

We use the subject-specific projection coefficients {x,, }2_; to predict diagnosis. Math-
ematically, the diagnosis prediction is captured in a logistic regression framework,
where we represented the class labels as, y, ~ o(xlc). Here, o(-) is the standard
sigmoid function and ¢ € R™! is the regression vector. We introduce an ¢, penalty

on both {e, X'} to make the optimization bounded and well posed.

Notice that we have coupled both the data modalities by tying the linear projection
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coefficients «,, to the same latent space. These coefficients are used as a low-dimensional
feature vector to predict diagnosis. This assumption allows us to extract discriminative
patterns in A and B that are associated with each other. For example, if the d**
basis element is highly discriminative, then the corresponding coefficient of the logistic
regression will be large. Thus, our joint formulation enables us to find discriminative
patterns that simultaneously capture the data variations while being predictive of
the disease. While our framework does not require the imaging and genetics data
dimensions R and G to be equal, it assumes that both modalities can be represented

by the same number of basis vectors.

3.2.4 Joint Optimization

We combine Eq. (3.14), Eq. (3.16), the logistic regression loss, and the regularization
losses in a single joint objective function. This joint learning strategy guides groupwise
discrimination informed by the two data modalities. Our joint objective function can

be written as

J(A,B,X,c)=|lI - AX||; + |G — BX|[;
N
-3 (yn log (a (a:fc)) + (1 = yn) log (1 —0 (a:fc)))
n=1

A A A
+ ?lTr (ATLA) + Ao|[Bl]2,1 + ?3HX|%7 + fHdl%

st. ATA=1 (3.18)
We have concatenated the patient activations maps as I = [i4,...,1y], the genetic
variants as G = [gy, . . ., g,], and the projection coefficients as, X = [x1,...,xy]. The

first two terms in Eq. (3.18) capture the error associated with the imaging and genetic
data representations, respectively. We minimize the Frobenius norms, ||[I — AX||%
and ||G — BX||% to estimate the unknown variables, {A, B, X }. The third term
captures the binary cross entropy loss for patient versus control prediction. The

hyperparameters {\1, A2, A3, Ay} control the influence of the regularization penalties,
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Figure 3-6. The alternating minimization approach to estimate the set of minimizers.

as described in the previous section.

We use an alternating minimization strategy to optimize the unknown variables
{A,B, X, c} in Eq. (3.18) from the data {%,,g,, ¥, }_,. This procedure iteratively
updates each unknown variable while holding the remaining variables constant. The

alternating minimization approach is illustrated in Fig. 3-6.

Optimize A using ADMM: The orthonormality constraint in Eq. (3.18) renders
the problem nonconvex with respect to the matrix A. We circumvent this problem
using Alternating Direction Method of Multipliers (ADMM). At a high level, ADMM
introduces auxiliary variables to create a larger problem, such that each subproblem
is easy to solve. In this case we introduce the matrices C and D into Eq. (3.18) to

obtain the following modified objective for both them and the matrix A:

A
{A*,C*, D*} = argmin || — CX||% + ElTr(DTLD)

"~

st. ATA=1, C=A, and D=A (3.19)

We find the closed form solution of { A, C, D} for the three subproblems by construct-
ing an augmented Lagrangian to Eq. (3.19) defined as follows:
A
L(A,C,DW.Z)=||I -CX]|?%+ ElTT(DTLD)
1 1
+ ﬁ||D —A+W|;+ QHC — A+ Z||3

st. ATA=1 (3.20)
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where {W, Z} are dual variables. We minimize Eq. (3.20) with respect to the primal
variables { A, C, D} and maximize it with respect to the dual variables {W, Z}. We
solve this problem in a iterative fashion. The pseudo code for our ADMM approach is

shown in Algorithm 1. Each step is further detailed below.

(1) Closed form update for A: We update A by minimizing corresponding

terms of Eq. (3.20).

; 1 . . 1 4 .
A" = argmin ;||Dl—A+W’||2F+;||C”—A+Zl||%
A

st. ATA=1

Given the other primal and dual variables, the update of A has a closed form analytical

solution.

A=Uly VT

where /.4 is a matrix of dimension M x d whose diagonal elements are 1, U € RM*M

V € R™ are two orthogonal matrices and ¥ € RM*? is a diagonal matrix satisfying
the SVD factorization D + C + W + Z = ULV’ The solution [153] is similar to

Procustes problem [154].
(2) Closed form update for D and C: The augmented Lagrangian is convex

in each of the variables {C', D} while keeping the other variables constant. Hence, we

can simply set the gradient of the cost function with respect to C and D, equal to

Algorithm 1 Iterative procedure for ADMM based on Augmented Lagrangian in
Eq.(3.20)

Initialise A°,C°, D°, W?°, Z°

for i = 0 to Convergence do

AT = UlyuaV7"

i+l 2 2m)

D' =2(\L+21) (A-W) y

CH' = (IX"+2(A-2)) (XX" +21)

Witl — Wi 4 Ditl _ At

Zitl — zi L Ot _ Ait

end for
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Zero.

D= Z (AlL + i]l) B (A-W) (3.21)
C = (IXT + i (A — Z)) (XXT + ZH) h (3.22)

(3) Update for W and Z: We maximize Eq. (3.20) with respect to W and Z,

by performing gradient ascent:

Wi+1 — Wz + D”H—l o Ai+1 (323)

ZM =Z'+ 0 - AT (3.24)

Maximizing the Lagrangian with respect to the dual variables ensures that the

constraints are satisfied.

Optimize B using fixed point iteration: The matrix, B does not have a closed
form solution due to the ¢5; norm. However, it can be efficiently updated using a
fixed point iteration method. In this method the £, norm of each row b is kept fixed
to its value ¢ = ||b] || from the previous iteration t. The matrix B is updated by

minimizing the modified objective.

167113

G
J(B) =G = BX|[; + 3 =5

i=1

(3.25)
Eq. (3.25) has closed form solution for each row, b; .

-1
b, =g/ X" <XXT + AZH)

¢
2r;

where g! is the i row of matrix, G. Since each iteration has a closed form solution

the algorithm converges very quickly. The proof of convergence can be found in [47].

Optimizing X and c using Trust Region Method: The cost function J(-) in

Eq. (3.18) is convex in each of the variables { X, ¢} while keeping the others constant.
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However, it does not have a closed form solution due to the logistic function o(-).
Therefore, using the unconstrained trust region method, we solve for X and ¢ in an
iterative fashion. At each iteration, the optimizer estimates a feasible direction and
a step size to update the variable of interest by minimizing the following quadratic

program:

1
sp = argming f(uy) +Vfis+ isTHks

subject to: ||s|| < 0 (3.26)

where V f, and H, are the gradient and Hessian of f(u) at u,. The update u —
uy + S is taken such that f(ug + sg) < f(ug). In our setting f(-) involves the terms
of J(-) that contain the variable under consideration. For example while minimizing

over X we consider:
[(X) =T - AX||} + ||G — BX||;

—Xo Z (yn log (0 (a:TTLc)) + (1 — yy,) log (1 -0 (mfc))) + A;HXH%

n=

We can solve for ¢ in a similar fashion.

3.2.5 Prediction on unseen data

We use 10 fold cross-validation to evaluate the performance of our model. In each
fold, we optimize the variables { A", B*, ¢*} over the training set and used them to
evaluate the diagnostic classification on the test set. During testing, we remove the
cross entropy term and use {%est, gy} @S input to obtain the projection coefficients,
Tiest- We then use the same logistic expression y.ss = o (L ,c*) to predict the class

labels.

3.2.6 Baseline Comparisons

We compare the predictive performance of our joint model with five baseline methods.

For each case, we use the same 10 fold cross validation described above.
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Support Vector Machine Classification: Support Vector Machines (SVM) con-
struct a hyper-plane in a potentially high-dimensional and nonlinear feature space of
the input data that maximally separates the two classes [76, 155]. Here, as a baseline
we use a linear SVM based on the concatenated imaging and genetic features, [i., g7]".

Once again the output is the disease status y,,.

Random Forest Classification: Random Forest (RF) uses an ensemble of decision
trees [156] to extract predictive features for classification. Each decision tree is
constructed using a random subset of the input features. This double randomization
provides robustness to overfitting over deterministic models [157]. Once again, the

input to the RF will be the concatenated imaging and genetic features, [i’,g*]", and

the output will be a patient versus control prediction, i.e., the label y,,.

Canonical Correlation Analysis + RF Classification Canonical Correlation
Analysis (CCA) finds bivariate associations between the imaging and genetics data.

These canonical coefficients are obtained by maximizing the following function:
{u,vi} = maxy,,, corr(I'u; G v;)

where {u;,v;} are the orthonormal basis vectors. These basis vectors form a low
dimensional space where the two data modalities are maximally correlated. After
obtaining the individual basis vectors, we stack them as matrices U = [uq, ..., ug] €
R4 and vV = [wy,...,ug] € RE*E to generate the imaging and genetics projection

coefficients [’LZU , ng}, which are used as inputs to an RF classifier to predict y,.

Parallel Independent Component Analysis + RF Classification: Parallel
ICA (p-ICA) decomposes the imaging and genetics data into independent but inter-
related networks. This is done by jointly maximizing multiple ‘cost functions,” one

of which specifies the independence among networks in each of the data sets and
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another term that maximizes the correlation among pairs of networks across data sets.

Formally,
I=SX and G=WZ

where S, W are independent source matrices and the X, Z are loading matrices
whose cross-correlation is maximized. Since p-ICA is a purely generative model, we
concatenate the loading matrices [Xyest, Ziest] and use it as the input feature vector

for a random forest classifier.

During training, we apply p-ICA to just the training data to estimate the sources
{Strains W itrain - During testing, we use these sources to obtain the loading matrices

for the test data via:

Itest = StrainX and Gtest = WtrainZ

Imaging Only Variant of Our Framework: We also consider a variant of our
method that involves only the imaging terms. This baseline will help us quantify the
improvement that we can achieve by incorporating the genetic data. As previously
described we optimize the variables, {A*, ¢*} on training set and use it for prediction

Yest = o(xL,c*) on test set.

Genetic Only Variant of Our Framework: Finally, we consider a variant of
our method that involves only the genetic terms. The setup is similar to the above.
Here we optimize the variables, {B*,¢*} on training set and use it for prediction
Ysest = 0 (L ,c*) on test set.

As a sanity check, we verify whether our model can identify the unknown variables
when the underlying assumptions of our objective function are met. Notice that our
joint framework has an equivalent Bayesian model, as illustrated in Fig. 3-7. Namely,

for each patient n, the process starts by sampling a latent projection x, from a
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Figure 3-7. The Bayesian framework for our simulation study.

zero-mean Gaussian, corresponding to /5 regularization in Eq. (3.18). From here, the
imaging data 2,, is generated as the noisy observation of the linear combination of the

orthonormal basis matrix, A:
i, = Ax, + €,

where €, ~ N(0,0%I) with effective noise level . We generate the deterministic
orthonormal matrix A as a QR decomposition of random Gaussian matrix, A, with
each column sampled from N (p4,0.011) with sparse binary mean 4 € [0,1]. In
our analysis we explore the task based fMRI data which has an underlying assumption
that a sparse set regions involve in the task show significant activity compared to the
rest of the brain. This process approximates the Laplacian constraints enforced on A
in Eq. (3.15).

The procedure to generate the genetics vector g, is similar but based on the

projection matrix B:
g, =Bx, +v,

where v, ~ N'(0,7*I). The columns b; from the matrix B is sampled as a random

multivariate Gaussian N (up,0.01I) with a sparse mean vector pp € [0,1,2]¢. This
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choice of mean mimics the real-life scenario where SNP values are generally given
as [0, 1, 2] based on the variation of the two alleles. Additionally, Gaussian sampling

across the columns of B mimic the /5 regularization as shown in Eq. (3.17).

Finally, the discriminative term is obtained via
Yp =0 (cTa:n)

where ¢, is a zero-mean Gaussian. ¢ ~ N (0, I).

We evaluate the performance of our model and optimization for different noise
levels on the imaging and genetic representations. The performance metric is the
accuracy of our selected features, as quantified by the Jaccard overlap between the
non-zero locations of the original bases matrices A and B and the estimated bases

matrices A and B , respectively.

In our synthetic experiment the dimensionality of the data is similar to our real
data, i.e., i, € R*! g c R and number of subjects N = 106. Empirically,
this allows us to evaluate whether our generative-predictive framework can identify
the set of ground-truth biomarkers in both A, and B. As our detection strategy we
take the absolute sum of the columns of estimated matrices {A, B }, and identify the
top {n,, n;} regions, where n; is the number of true non-zero locations in p4, and n,
is the number of true non-zero locations in pg. Finally, we find the overlap between
the estimated locations with the true locations which is shown in Fig. 3-7. A high
Jaccard index indicates that our model can correctly find the non-zeros location in
pa and pp.

Fig. 3-8 shows the performance of our model at varying noise level as governed
by o and 7. As seen, in one case we fix the noise for 7, at 0 = 0.2 and sweep over
v, while in the other case we fix the noise for g, at v = 0.4 and sweep over o. We
allowed a wide range for our noise parameter {02 € [0.01,1],~7% € [0.01,4]} to check

the model’s robustness against random noise. We observe that 42 = 0.16 and o = 0.04
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Figure 3-8. The overlap between our estimated bases with the true sparse bases A and
B at varying level of noise. Compared to the numerical range of the feature vectors we
have sweeped over four standard deviation for the noise.

are the variability in our real-world fMRI and genetic datasets, which lies well within
the stable region of our model as shown in Fig. 3-8. With the increase in noise the
amount of overlap as quantified by the Jaccard Index decreases. However, the model
can extract relevant features with high accuracy over a wide range of input noise.
This shows that the optimization strategy is robust and is capable to extract the

informative features even when we are outside noise regime of our real-world data.

3.2.7 Experiments

3.2.7.1 Real-World Study of Schizophrenia

We validate our framework on task fMRI and genetic data acquired at two different
sites on two different study populations. The first dataset was provided by researchers
at the the Lieber Institute for Brain Devel-opment (LIBD) in Baltimore, MD, USA.
The second dataset was acquired at the University of Bari Aldo Moro, Italy. The data

collection procedures and pre-processing were consistent across sites.

Neuroimaging Data: Our datasets include two fMRI paradigms that have been
used to study schizophrenia [3, 4]. The first paradigm is a block design working memory

task (N-Back), and the second is a block design declarative memory task (SDMT),

59



which involves incidental encoding of complex aversive visual scenes. The details of
the imaging modalities and the preprocessing can be found in Section 2.4.1 Our inputs
to the model are region-wise averages of the contrast values across all voxels in each
parcel of the brain. Further details for generating the contrast maps can be found in

Section 2.4.1.

Table 3-11 reports the subject numbers for each paradigm and site. The groups
were matched on age, IQ (WRAT score), years of education and in the case of N-Back,
the percent correct response for the 2-Back task. Table 3-111 shows the demographic
variability of all the subjects used in our analysis. Here we note that the education

data for BARI is not available to us and hence is not used in the analysis.

Genetic Data: Genotyping was done using variate Illumina Bead Chips including
510K/ 610K /660K /2.5M. After the initial preprocessing steps described in Section 2.4.1
we obtain 102K linkage disequilibrium independent SNPs. Given the small sample sizes
in Table 3-I1 (N = 100 for each dataset), we subselect a set of SNPs whose p-value for
disease association is p < 1074, as identified by the PGC-Consortium GWAS analysis.
In total, this threshold yields 1242 linkage disequilibrium independent SNPs, which
balances the representativeness of the genetic data with robustness of our optimization
procedure. We use the same reduced set of SNPs for all cross validation folds. This

reduced set was obtained from a larger genetics study of 36,989 schizophrenia patients

Table 3-11. The number of subjects present from each experimental paradigms from the
two institutions

fMRI Paradigms
Institution N-Back SDMT
Cases Controls Cases Controls
LIBD 53 53 46 47
BARI 43 54 - -
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Table 3-11l. The demographic of all the subjects used for our analysis. The education
data for BARI is not available and hence is not included in our analysis.

, LIBD BARI
Demographic
N-back SDMT N-back
Sex (M/F) 65/41 57/36 74/23
Age (years) 30+ 10 33+9 30+9
Education (years) 15+2 15+3 -
IQ 105 £ 10 105 £ 8 107 £ 8

and 113,075 neurotypical controls run by the PGC Consortium. Further details about
this study can be found in [17]. Hence, our feature selection procedure does not

confound the training and testing data in our analysis.
3.2.7.2 Evaluation Strategy

We quantify the performance of our method and all the baselines in terms of Accu-
racy (Acc), sensitivity (Sens) and Specificity (Spec). Accuracy is a measure of correct
detection of the class labels. Sensitivity is the ratio of the true positives among all
predicted positives, whereas specificity is the ratio of the true negatives among all

predicted negatives. Formally,

e TP + TN
TP + FP + TN + FN
oo TP
T TP LFN
Spec = — N
TN + FP

where TP = True Positive, TN = True Negative, FP = False Positive, FN = False

Negative.
3.2.7.3 Hyperparameter Selection

Our generative-discriminative framework contains the following hyperparameters:

{A1, A2, A3, A4} to control the contributions of the regularization terms in the optimiza-
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Table 3-1V. Classification performance of each method. We abbreviated Sensitivity to
SENS, Specificity to SPEC, Accuracy to ACC, and Area Under Curve to AUC.

LIBD BARI
Method N-Back SDMT N-Back
SPEC SENS Acc AUC SENS SPEC ACC AUC SENS SPEC ACC AUC
SVM 0.53 £0.03 0.44 +0.03 0.49 £0.02 0.3540.04 0.60 + 0.06 0.57+£0.03 0.57 £ 0.02 0.56 £ 0.03 0.73 £ 0.04 0.49 £ 0.05 0.63 £ 0.04 0.70 £ 0.02
RF 0.55 £ 0.05 0.52 4+ 0.03 0.53 £0.03 0.54 4+ 0.03 0.64 +0.03 0.57 £ 0.04 0.61 +0.02 0.65+0.03 | 0.88£0.01 | 0.49+0.03 0.70 £ 0.01 | 0.84 % 0.01
CCA + RF 0.49 £0.10 0.48 £ 0.09 0.49 +£0.08 0.52 4+ 0.08 0.53 +£0.05 0.48 £ 0.09 0.51 +£0.05 0.51 £0.05 0.75 £ 0.06 0.31 £0.05 0.56 £ 0.05 0.56 £ 0.05
p-ICA + RF 0.49 £ 0.09 0.45 4 0.08 0.47 £0.04 0.47 4 0.05 0.53 £ 0.10 0.41 £0.10 0.47 £0.08 0.45 £ 0.08 0.75 £ 0.05 0.65 £ 0.05 0.71 £ 0.03 0.76 £ 0.02
Our Method (Imaging Only) 0.55+0.04 | 0.62+0.03 | 0.58+0.02 0.63 4 0.02 0.63 £ 0.04 0.59 +0.03 0.61 +0.03 0.67 +0.02 0.67 +£0.04 0.80 +0.05 0.73 +£0.03 0.79 £ 0.02
Our Method (Genetic Only) 0.44 £0.03 0.50 +0.05 0.47 £0.03 0.45 4+ 0.02 0.45 £ 0.08 0.45 £ 0.07 0.45 +0.04 0.43 £0.03 0.65 + 0.02 0.66 £ 0.02 0.66 £ 0.02 0.69 £ 0.01
Our Method (Imaging + Genetics) | 0.56 £ 0.04 | 0.60 £ 0.02 | 0.58 £ 0.02 | 0.63 £ 0.02 | 0.64 & 0.04 | 0.61 4= 0.04 | 0.63 & 0.03 | 0.69 £ 0.02 | 0.66 £ 0.04 | 0.83 £0.02 | 0.73 £0.02 | 0.81+0.01

tion, and d specifies the latent space dimensionality. To combat overfitting, our strategy
is to optimize these hyperparameters based on the LIBD N-back dataset and use the
same values for the LIBD SDMT and Bari N-back analyses. We sweep the regularizers
{A1, A2, A3, A4} over two orders of magnitude and the latent space dimension from
d=2>5,...,11. In our analysis we have observed that the hyperparameter A3, and \4
are stable over a range of [0.005 — 5], so we fix them at A3 = 1, \y = 1. The sensitivity
plot is shown in Fig. 3-9. Based on our experiments we fix the feature dimension (d),
the imaging regularizer (\;), the genetic regularizer (A2), to {d =7, \; = 1, Ay = 10}.
We have used the same hyperparameter setting for all the variants of our model for
both the SDMT (LIBD), and the N-Back (BARI) datasets. The sensitivity plots,
Fig. 3-9 of {\1, A2} also show stability over a wide range, but they are closely tied
with the biomarker detection regime. So, for future applications on a standalone
dataset we advise the researcher to fine tune them using some validation techniques,

like cross-validation.

As our optimization is non-convex, we use an informed initialization strategy to
satisfy the variable constraints while not biasing the solution path. To this end, we
initialize the imaging basis matrix A as a QR decomposition of random Gaussian
matrix. The QR decomposition satisfies the orthogonality constrain over columns of
A in our framework. We initialize B, X, ¢ such that each element is sampled from a
uniform distribution between 0 and 1. We note that since our optimization converges to

a local optimum, different initialization may produce different final solutions. However,
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Figure 3-9. The change in AUC for different ranges of the hyperparameters { A1, Ao, A3, Ay }.
We sweep one hyperparameter while keeping the others constant at their stable value.
This analysis has been done on the N-back dataset.

Table 3-1V suggests that classification performance remains stable across different

cross validation folds, each of which has different initialization.

Similar to our method, we optimized the hyperparameters for the baseline methods
on the LIBD N-back data and used these settings for the two analyses. For RF
classification we swept over the number and depth of the trees. We controlled the
depth of the tree depth by setting the minimum number of observations per leaf
node. These parameter sweeps were repeated for CCA+RF and pICA+RF. Based
on these sweeps, we fixed {No. trees = 2000, MinleafSize = 5} for the standard RF
classification {No. trees = 8000, MinleafSize = 10} for CCA+RF and {No. trees =
9000, MinleafSize = 1} for pICA+RF. Additionally, for the implementation of pICA
we use the standard hyperparameter setting as explained in the Fusion ICA (FIT) [158]
toolbox. The linear SVM includes one hyperparameter, BoxConstraint which controls

the outlier penalty. Our final settings was { BoxConstraint = 1}.
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3.2.7.4 Class Prediction

Table 3-1V reports the classification performance of all methods on the three fMRI
datasets. We can see that the machine learning baselines perform poorly compared to
all the three variants of our model. This result suggests that our coupled generative-
discriminative framework is able to extract meaningful features from the data that
capture group level differences. Moreover, we observe that our framework achieves the
best cross-site performance between the LIBD and Bari cohorts. This performance
gain demonstrates that our model is agnostic to the choice of hyperparameters and
our optimization procedure is robust enough to handle noises associated with different
sample sets. Though all the variants of our model achieve good classification accuracy
compared to the baselines, the performance gain obtained by integrating both the
imaging and genetic data modalities is apparent across all experiments particularly
with regards to accuracy and AUC. This performance gain can also be attributed tot
the fact that our method can find patterns from the imaging and genetics data that

are highly predictive of the disease.
3.2.7.5 Predictive Biomarkers

In this section, we aim to identify and interpret the underlying biology of potential
imaging-genetics biomarkers. We emphasize that our analyses and conclusions are

exploratory, and for this reason, we focus on just the LIBD data.

We use the patient specific scores «,, for disease classification and data reduction.
They contain information both about the imaging data and the genetic data. These
vectors are d dimensional where each dimension can be associated with a column
of A and a column of B. In order to identify which columns of A and B contain

most discriminative patterns we perform a KS test [159] between x,,. .. (d-th feature

d

control

of the disease group) and « (d-th feature of the control group). A low p-value

along a specific dimension d would mean that the distribution of that feature is not
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Algorithm 2 Subsampling strategy for identifying predictive biomarkers

1: Train the model on the complete dataset.

2: Perform KS test on loading vectors z¢ (subject n and basis d) between patients
and controls.

3: Identify the significant imaging and genetic components {(aj, b7),...,(a;, b.)}

based on a KS test.

for i =1 to 50 random subsamples.
Randomly sample 90% of the data,
Train the model on the sampled dataset.
Perform KS test on loading vectors 2% between patients and controls .
Identify the significant imaging and genetic components based on the KS test.
Match the estimated basis vectors as identified by the KS test with the reference
ectors as shown in Eq. (3.27).

10:  Normalize the matched vectors to z scores.

11: end for

12: Find the order statistics as shown in Eq. (3.28).

13: Predictive Biomarkers < Find the locations (rows) of Z¢ where |Z¢(r)| > 1.5.

equal between patients and controls. The KS test gives us d p-values for all the d
dimensions of x,. Finally, we select the significant components with FDR corrected
p < 0.01. Here, we note that this test allows us to prune out regions and SNPs that
do not track with diagnosis, the interpretation should be viewed as an exploratory

analysis, and further work is required to verify clinical relevance.

We perform a subsampling experiment to quantify the reproducibility of these
bases. Namely, we train the model over the complete dataset to identify the reference
basis vectors indicated by {(aj,b]),...,(a} b})}. Our subsampling strategy relies
on random sampling of data without replacement. At a high level patterns that are
consistent with the reference vectors {(aj,bj),...,(a’,b’)} across all the trials are

more likely to generalize beyond the present experimental setup. The subsampling

strategy to identify the biomarkers is shown in Algorithm 2.

Our subsampling procedure uses 90% random sampling without replacement. For
each trial, we perform a KS test to identify the significant basis vectors estimated

from the sampled data. We then perform a one-to-one mapping between the reference
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vectors and the estimated vectors by maximizing the correlation between them. The

correlation between the i*" reference vector and the j* estimated vector is defined as
—\T R —
(lazl = Tail) (1451 —a,0)

Ci; =

I o TV A 2\ 2
|((az1 = TaD) [} | (& - Ta51)[)

where a; is the i" reference basis vector, a; is the j™ estimated basis vector and (-)

(3.27)

denotes the mean of features along the vector. We take an absolute value because our
model is invariant to a change of sign of the bases. This correlation analysis allows us
to match the set of basis vectors obtained from the sampled data that are strongly

correlated with the reference vectors.

Finally, we identify the consistent set of biomarkers across the subsamples via the

element-wise median z-score of the basis vectors across the 50 trials.

Z¢(r) = median (&1»(7’), . 7&50(7~)) (3.28)

J J

where Z¢(r) quantifies the importance of region r across the subsamples, and &f(r) is
the estimated basis obtained from the k' subsample. A high value in Z means that
the region is consistently selected for diagnosis of a subject during subsampling. We
perform a meta analysis on the set of biomarkers thresholded at |Zf(r)| > 1.5 to show

their relevance in the context of schizophrenia.

As a second stage of our exploration study we perform a correlation analysis between
the identified biomarkers and a generalized cognitive score derived from a battery
of standard cognitive assessment which were performed on the patients and controls
subjects. The generalized cognitive score, or “g” score [160], is composite measure of
general cognitive ability based on six broad cognitive domains: verbal memory, n-back,
visual memory, processing speed, card sorting and digit span. Here, we consider
the imaging components that show significant group level differences between cases

and controls, as identified by the KS test. In order to find the association between

these components and cognition, we calculate the Pearson’s correlation between the
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Figure 3-10. A detailed description of all the brain regions identifies by our model for
N-Back data.
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Figure 3-11. Left:The identified set of biomarkers that have shown strong association
with the generalized cognitive scores for the Nback dataset. Right: The scatter plot
between the cognitive scores and the subject specific loading scores for the Nback dataset.
The correlation between the loading scores and the “g" scores are identified by p, and
level of significance is captured by the FDR corrected p-value.

patient specific scores {z2}_, and the corresponding patient g-score. Each dimension

d of the patient specific scores z¢ is associated with the basis vector which capture
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Figure 3-12. The correlation value of each brain component identified in the N-Back
dataset with the higher order brain states based on the Neurosynth database.
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Figure 3-13. The importance map of all the SNP and their overlapping genes across all
the subsamples for N-Back data.

group level difference. So, as a next step we plot the basis vectors in the brain. This
analysis explores the relationship between the cognitive scores and the identifiesd set

of biomarkers.

Analysis of the N-Back Biomarkers: For the N-Back data our initial KS test
reveals three components that are significantly different between cases and controls
with p < 0.0021, p < 0.0024, and p < 0.009, respectively (FDR corrected). We use

these components as reference for our subsampling experiments.
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Figure 3-14. The gene expression pattern of the top genes identified from the N-Back
task based on the GTEx database.

A detailed diagram of all the brain regions across the three different components
along with their corresponding annotations are shown in Fig. 3-10. In Component 1
and Component 3 we can see regions that include superior frontal gyrus (SFG),
and inferior frontal gyrus (IFG), which are know to subserve executive cognition [4].
Moreover, in Component 2 we can see regions from the default mode network (DMN)
which is also implicated in schizophrenia [161]. We further use Neurosynth [162] to
decode the higher order brain states of the the biomarkers aggregated across all the
three components. Fig. 3-12 shows the Neurosynth terms that are strongly correlated
with our biomarkers. We note that the terms for Component 2 involve regions
used for planning and execution of a task, whereas Component 1 and Component
3 involve regions associated with memory retrieval and the default mode. These
results show that the model can extract potential imaging biomarkers that contain

informative patterns of the data.

Fig. 3-13 illustrates the component-wise SNP contributions, whose z-values are
overlapped with a gene. We use the SNPnexus [163] web interface to find the set
of overlapping genes or the nearest upstream or downstream gene for each SNP. As
parallel to Neurosynth analysis, we perform a gene expression based analysis [164]

over the 20 overlapping (or nearest) genes of the top SNPs identified from each of the
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three components. This exploratory analysis may help us to understand the cis-effects
of the SNPs and how they alter the functionalities of genes expressed in different
tissues of the brain. Fig. 3-14 shows the gene expression pattern of each gene across
different brain tissues. As seen, two of the most expressed genes that appeared in
multiple components are TCF20 and LINC00599 which are known to be associated
with schizophrenia [17] and neuroticism [165].

The scatter plots in Fig. 3-11 show association between each of the Nback com-
ponents, as selected via the KS test, and the “¢g” scores. Among the three Nback
components the first two components show significant association while the third one
was not significantly correlated. Additionally, in Fig. 3-11 we plot the identified set of
biomarkers associated with the loading scores as separate brain plots. Both Nback
components show that the shared variance between brain regions of the frontoparietal
network, such as the inferior frontal gyrus and angular gyrus, is anticorrelated with
components of the default mode network such as the cuneus and the medial prefrontal
cortex. Positive loading scores were associated with lower g, suggesting that, across
individuals, high loading in these two components covaried with greater frontoparietal
network activation. At the Nback load we considered, greater frontoparietal activ-
ity has been reported in patients with schizophrenia, when performance is equated

between groups [4].

Analysis of SDMT Biomarkers: Our KS test on the SDMT data revealed two
significant components with p < 0.0004 and p < 0.0004 (FDR corrected) between
patients and controls. Once again, these components served as the reference vectors

in our subsamples.

Fig. 3-15 shows the set of brain regions identified by our method along different
axial views. The SDMT biomarkers implicate the parahippocampal (P-HIP), superior

frontal regions (SFG) along with precuneus, fusifor gyrus and cuneus, all of which are
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affected in schizophrenia [166, 167]. We also observe regions from the default mode
network that control memory encoding in schizophrenia. Fig. 3-17 reports the results
of our Neurosynth meta-analysis. Notice that our biomarkers include regions involve
in memory [3] and facial recognition, both of which are impaired in schizophrenia.
Taken together, these results highlight the promise of our model for neural biomarker

discovery.

Fig. 3-18 shows the SNPs, and their overlapping (or nearest) genes as found from
the SNP-nexus web interface. Again, we perform a gene expression phylogeny [164]
over the identified set of genes. Fig. 3-19 captures the expression level of the most
significant genes implicated by the identified set of SNPs. Here, LINC00599 shows high
expression levels in brain and are also known to be associated with schizophrenia [168]
and neuroticism [165].

The association with cognitive scores for the SDMT data has been done by following
the same strategy of finding correlation between the patient specific scores z¢ and

the “g” scores. Likewise, Fig. 3-16 shows the identified set of biomarkers associated

Figure 3-15. A detailed description of all the brain regions identifies by our model for
SDMT data.
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Figure 3-16. Left:The identified set of biomarkers that have shown strong association
with the generalized cognitive scores for the SDMT dataset. Right: The scatter plot
between the cognitive scores and the subject specific loading scores for the SDMT dataset.

with the loading scores along with the scatter plot that shows significant association
between the loading scores and the cognitive “¢g” scores. Both SDMT components
tapped into the episodic memory network, including the hippocampus, the medial
and dorsolateral prefrontal cortex, posterior cingulate and parietal regions, mostly
negatively correlated, with some heterogeneity between components. Considering the
correlation with “g”; negative loadings suggest that the best cognitive performers
showed a greater involvement of the episodic memory network during the task, which
is consistent with previous reports on these data [30]. These findings show that

the model can be used to explore potential biomarkers and their interactions in a

multivariate framework.
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Figure 3-17. A detailed description of all the brain regions identifies by our model for
SDMT data. The correlation between the loading scores and the “g" scores are identified
by p, and level of significance is captured by the FDR corrected p-value.
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Figure 3-18. The importance map of all the SNP and their overlapping genes across all
the subsamples for SDMT data.

3.2.8 Discussion

Our generative-discriminative framework exploits the interconnectedness of two dif-
ferent data modalities. The dictionary learning module extract features from the

imaging and genetic data that are strongly connected with each other, while the
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Figure 3-19. The gene expression pattern of the top genes identified from the SDMT
task based on the GTEx database.
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Figure 3-20. The distribution of variance between each pair of brain regions over the 10
cross validation fold.

classification module guides our framework to identify patterns that are representative
of the disease. The regularity terms enforce additional structure associated with the
data, i.e., the genetic regularizer captures sparse representative patterns from the data
and the graph Laplacian penalty captures the grouping effect between different brain
regions. Empirically, we find that the Laplacian structure is stable across different
cross validation folds. Fig. 3-20 illustrates the histogram of variance in the correlation
maps w;; used as the regularizer for A in Eq. 3.18 when computed across the 10 cross
validation folds. This stability may be partially attributed to the task fMRI paradigm,

which tends to activate similar brain areas across subjects. In the preprocessing stage
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of our analysis we parcellate the brain activation maps into 246 regions and use them
as input to our model. Given the small dataset N ~ 100, this parcellation scheme
balances the expressibility of the data while maintaining the stability of our model.
Additionally, averaging the brain activation over multiple voxels smooths out the noise
and helps us to find meaningful patters across groups. Finally, the consistent labelling
of the brain regions across subjects enables us to interpret our results and perform

further exploratory analysis.

We use an alternating minimization strategy to optimize our coupled framework.
Alternating minimization is popular for large-scale non-convex problems due to the
simple implementation and empirically stable performance. With that said, there
are few theoretical convergence guarantees. While our objective function is bounded
from below, convergence to a local minim depends on how well the objective function
decreases after each iteration, which finally depend on the convergence properties
of Eq. (3.19), Eq. (3.25), and Eq. (3.26). Our objective function is continuously
differentiable and convex with respect to {B, X, c}. The works of [169, 170] show
that under such conditions alternating minimization converges to a stationary point.
However, the orthogonality constraint over the imaging basis matrix A makes the
problem non-convex. The work of [153] shows the convergence property of the
orthogonality constraint using ADMM. Despite the lack of theoretical guarantees, we
observe a robust empirical convergence of our alternating minimization procedure
to a local minima. Thus, in practice, our optimization strategy is stable across the

different datasets and initializations used in our experiments.

In Section 3.2.7.4 we demonstrate that our model achieves better classification
accuracy than the baselines across all three datasets. In Section 3.2.7.5 we go a step
further and present a strategy to identify a robust set of discriminative biomarkers that
are coupled via the latent projections & across the imaging and genetic data. Through

the meta-analysis we show that these biomarkers are strongly related with the disease
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propagation pathway of schizophrenia. For example, the N-Back biomarkers involve
regions from dorsolateral prefrontal cortex, and default mode network, which are
known in literature to be affected by schizophrenia. Likewise, the genetic biomarkers
are expressed in multiple regions of brain, which shows a probable association between
genetic risk and the disease propagation pathway. Similarly, in the SDMT analysis we
see association between parahippocampal activity and genes that are associated with

multiple behavioral deficits.

In this exploratory analysis we note that the estimated components contain
overlapping brain regions. This behavior may be attributed to our optimization
strategy. In order to capture the variance of the data, the model may assign more
than one basis vector to the same subset of features. The regularizations and the
constraints does not prevent our model to identify components with spatial overlap,
which facilitates the behavior. As a second stage of our exploration study we further
show that these set of biomarkers show strong association with the cognitive “¢” scores.
Even though performing sub-type analysis is not the target of this model but this

post processing strategy helps to identify imaging and genetic interactions which may

prove to be significant for identifying novel therapeutic targets.

One disadvantage of our framework is that, it is invariant to changes in sign, so
the exact association between a imaging or genetic region with the disease is unknown.
Moreover, the identified set of SNPs from our model are most likely tag-SNPs [171],
meaning that there is a low probability that they are causal. An added complexity is
that the SNPs may not lie in a genetic region, but they still affect a gene by modulating
the regulatory factors. Hence, further analysis is required to identify the potential

gene targets for therapy.

One limitation of this work is the relatively small sample size. We demonstrate
that in this setting our generative-predictive framework can outperform traditional

machine learning methods across two task fMRI paradigms and two sites. With that
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said, we acknowledge that follow-up studies should be done to validate this framework

on a larger cohort.

Finally, our current framework only considers disease classification via the logistic
regression term in Eq. (3.18). However, psychiatric research is exploring the utility
of a finer-grained characterization of different disorders across multiple cognitive or
behavioral axes. In future, we will explore extensions of our generative-predictive
framework for patient subtyping via ordinal regression and multivariate linear regres-
sion. We will also explore nonlinear relationships between the data modalities. As
alluded to above, incorporating more complex relationships may help us to build a
bigger picture of the disease under study. Hence, in the future work we will explore

pathway specific information for better understanding of the disease propagation.

3.2.9 Summary

We have presented a novel generative-discriminative framework that relies on cou-
pled latent projections to jointly model imaging and genetics data. The projection
operations leverage a dictionary learning setup, where the imaging and genetics basis
matrices capture representative facets of the data. The projection coefficients are tied
across modalities and are input to a logistic regression model to predict class diagnosis.
We have demonstrated our framework on a population study of schizophrenia. Our
generative-discriminative approach achieves better diagnostic classification accuracy
than competing machine learning baselines, and it implicates an interpretable set of
biomarkers that underlie the well-documented deficits in schizophrenia. Finally, our
model is agnostic to the imaging modality and the clinical population. Hence, it is a

powerful tool to study a range of neuropsychiatric disorders.
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Chapter 4

A Deep Neural Network
Architecture Exploring
Non-Linearity In Modeling

Multimodal Imaging and Genetic
Data

Neuropsychiatric disorders like schizophrenia and autism are multifaceted [172—174].
They are characterized by cognitive dysfunction hallucinations, along with social and
behavioral challenges [175-177]. At the same time, family and twin studies [32, 33]
have found a strong genetic underpinning associated with these disorders. However,
the genetic influence of neuropsychiatric disorders is complex and often guided by
additional environmental factors and gene-gene interactions [23, 34]. Traditional
imaging genetic studies [11, 141] and our previous works [59-61] focused on exploring
biomarkers and disease prediction in a multivariate linear framework. Such models
extract a representation from the imaging and genetic data and associate it with
disease labels in a linear model. Fitting a linear model is an over-simplistic assumption
that does not account for the complex interaction between brain activations and
genetics.

Deep learning approaches are widely known for their capability of combining

low-level input features and extracting high-level non-linear data representations [79,
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Figure 4-1. A general framework for feature selection in deep learning models. F' € RN
is the input data matrix with N samples and d-dimensional features. y is the output
class labels. The feature selection mask c is a d dimensional binary vector multiplied
elementwise with F'.

80, 119]. These models provide a strategy to deviate from linear models and explore
non-linear interactions between imaging and genetics data. The main drawback of
deep learning is the lack of interpretability. However, interpretable Al has recently
provided multiple strategies to find biomarkers [129, 130] and track the information

flow through the model.

This work [62] introduces a novel autoencoder model to predict neuropsychiatric
disorders while finding biomarkers. Our autoencoder is complemented with a Bayesian
feature selection module that masks out non-informative features and passes discrimi-
native information through the autoencoder module. On a high level, the Bayesian
module subselects biomarkers, while the autoencoder models the non-linear relation-
ship between imaging and genetic data. In addition, we have coupled a classifier
with the autoencoder for diagnosis. The autoencoder, coupled with the Bayesian
module and the classifier, provides a robust and adaptable framework to predict the

underlying disorder while finding susceptible imaging and genetic biomarkers.

4.1 Bayesian Feature Selection Strategy In Deep
Learning Models

Fig. 4-1 shows a general framework for using our Bayesian feature selection strategy in
deep learning models. Mathematically, let F € R be the input data matrix with

N samples and d-dimensional features, c is the binary feature selection mask, and y
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is the class labels. The problem of feature selection can be viewed as masking the
irrelevant features before passing them through the model. From a Bayesian viewpoint,
the importance of each feature can be estimated by inferring the posterior probability
distribution P (c|F',y) given the paired dataset: D = {F,y}. However, the desired
posterior distribution p(c|F',y) is intractable due to an exponentially large number of

possible binary configurations of c.

One strategy is to minimize the KL divergence between an approximate distribution
q(+) and the true posterior distribution KL (q(¢)||p(c|F,y)). Mathematically, this
optimization can be written as:

arg{r)lin — By [log (p (y|F, ¢))] + KL (q(c)||p(c)) , (4.1)

p
where p(c) is a prior over the binary masks. In our approach, we use Binary concrete
distribution [178, 179] as ¢(-). Under this distribution ¢ can be viewed as a continuous
relaxation of Bernoulli random variable. Mathematically, each element of ¢ can be

written as:

o o (oEB) Lot =) o) sl VY
where U is sampled from Uniform(0, 1), the parameter ¢ controls the relaxation from
the {0, 1} Bernoulli, and p are the parameters of the proposal distribution. A unique
property of binary concrete vectors is that lim;_,o P(c(i) == 1) = p(i). This property
shows that, like Bernoulli, p captures the relative importance of each feature.

Eq. (4.1) does not have a closed-form solution. However, it can be optimized
via Monte Carlo integration by sampling the vectors ¢ according to Eq. 4.2. The
continuous relationship between ¢ and p allows us to optimize p using stochastic
gradient descent [180, 181]. Finally, the first term of Eq. 4.1 can be viewed as
a likelihood loss for the deep learning model. During disease prediction, this loss

can be generated as the binary cross-entropy loss, where the input features F are
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Figure 4-2. G-MIND architecture. The inputs {Z1,42} and {g} corresponds to the two
imaging modalities and genetic data, respectively. &(-) and D;(-) captures the encoding
and decoding operations, and ))(-) captures the classification operation. ¢; is the Bayesian
feature selection mask, and £" is the low dimensional latent space.

masked according to e¢. Lastly, we want to note that the feature selection strategy is

independent of the deep learning model so that it can be used across many models.

4.2 GMIND: The Multi-modal Encoder-Decoder
Framework

In this work, we introduce an autoencoder framework that can combine multiple
imaging data modalities with genetic data while finding discriminative biomarkers.
Fig. 4-2 illustrates our full model. The inputs ¢} and % denotes the input imaging
modalities for subject n. In our case 27 and 2, are activation maps from two different
fMRI paradigms. The input g" represents the SNP genotype, and y" is a binary class
label (patient or control). Let Ny, N2, and N, denote the number of subjects from
whom we have the corresponding imaging or genetic modality. Let R be the total
number of ROIs in the brain, and G be the total number of SNPs. The imaging data

has the dimensionality 7,45 € R®*', and the genetic data has the dimensionality

81



g" € R, We jointly model the imaging and genetic modalities using an auto-
encoder framework. The first layer of the encoder incorporates the Bayesian feature
selection layer, parameterized by p,, for each modality m. We use the resulting low

dimensional representation ¢" for subject classification.

4.2.1 Feature Importance using Learnable Dropout

We followed the general framework of the Bayesian feature selection strategy ex-
plained in Section 4.1. We incorporate the Bayesian feature selection as a learnable
dropout layer. The standard Bernoulli dropout independently drops nodes using a
fixed probability defined by the user. Here, we wish to learn these values, so we
reparameterize the Bernoulli dropout mask as defined in Eq. 4.2. This continuous
relaxation [179, 180, 182] of the Bernoulli random variable enables us to update the
dropout probabilities while training the network. During each forward pass through
the network we sample random variables ¢}, ¢l € R™!, and ¢, € R®*' for imaging

and genetic data, respectively, from a binary concrete distribution and use it as a

dropout mask for patient n:

- <10g<pi1> —log(1 ~ ¢i) +log(u) — log(1 — uﬁ)) (4.3)

t

where u}. is a random vector sampled from Uniform(0,1), the parameter ¢ (tem-
perature) controls the extent of relaxation from the Bernoulli distribution and p,,
captures the probabilities with which the features of modality m are selected. As
seen in Eq. (4.3) when the probability p,, is close to 1 that feature will be selected
most of the time, as compared to a feature whose probability is close to 0. We
further incorporate a sparsity penalty over the probabilities p,, via the KL divergence
KL (Ber(p,)||Ber(p,,)) where p, is a hyperparameter fixed to 0.001. Effectively, this

term encourages sparsity in the elements of p,,.
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4.2.2 Multimodal Latent Encoding

The encoder learns a nonlinear latent space that is shared between all the data
modalities. As shown in Fig. 4-2 we encode the data following the dropout using a
cascade of fully connected layers followed by a PRelu activation [121]. Unlike standard
autoencoder-based networks, we couple the low-dimensional representations of each
data modality to leverage the common structures shared between them. The latent

embedding ¢" is computed as

1

£ = (8000 ) + E:(i3. ) + 0" <)) -

Here &;(+) represents the encoding operation for modality m, and M,, is the number
of modalities present for subject n. As seen in Eq.(4.4), our latent representation
is the sum of the individual projections, scaled by the amount of available data M,.
This fusion strategy encourages the latent encoding for an individual patient to have

a consistent scale, even when constructed using a subset of the modalities.

4.2.3 Data Reconstruction

The decoder reconstructs the data from the latent representation to ensure that the
encoder is preserving sufficient information about the inputs. We use fully connected
layers along with PRelu, dropouts, and batchnorm for decoding. Mathematically, the
autoencoder loss is the [ norm between the input and reconstruction:
Ng
Z i7" = Di()]]5 + Zl |lé5 — Da(")|I5 + Zl lg" — Ds(¢")]]3
n= n—

where D,,(+) is the decoding operation for modality m.

4.2.4 Disease Classification

The final piece of our network is a classifier for disease prediction, which will encourage

the dropout mask and latent embeddings to select discriminative features from the
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data. We employ fully connected layers, and a cross entropy loss for classification:
— N (" log(9") + (1 — y™) log(1 — 9™)), where y is the original class label and "

is the predicted class label.

Our combined G-MIND objective function can be written as follows:

L(i1,i2,9) =\ Z 17 = Dy(€")][2 + Ao Z 133 — Da(€")]2

SIS Z g™ — Ds(¢")||5 — Z (y"log (") + (1 — y") log(L — ™))
+ 5 Zl Xk: K L(Ber(py(k))||Ber(p,, (k) (4.5)

where N is the total number of subjects. The parameters {1, A2, A3} control the con-
tributions of the data reconstruction error, \; controls the contribution of classification

error, and A5 regularizes the sparsity on p,,.

The summation in Eq. (41.5) enables G-MIND to handle missing data. For example,
if 41 is not available for subject n, then the gradients with respect to encoder & (-)
and decoder D;(-) will be zero. As illustrated in Fig. (4-3), information will flow into
and out of the latent space through the other network branches and will only be used

to update those parameters.
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4.2.5 Prediction on New Data

During training, we learn the encoder, decoder, and classifier weights, along with the
probabilistic masks p,, by minimizing Eq. (4.5). We then threshold the probabilistic
mask p,, = (p,,, > Tm) to select the most important features for reconstruction and
classification. When testing on a new subject data, we premultiply the available
modalities by the thresholded dropout mask, i.e., 'ZT =1 ® P;,. The masked input 1711
is sent through encoder and the classifier for diagnosis. We do not use the learned
dropout procedure during testing, since different samples of ¢, may lead to a different

diagnosis, whereas our goal to obtain a deterministic label for each subject.

4.2.6 Implementation Details

We set the regularization parameters of our model {1, Ao, A3, Ay, A5} as 1075 where
B; is selected such that A; multiplied by the appropriate loss term lies within the same
order of magnitude (1—10). This criterion is intuitive (i.e., equal importance is given
to both the imaging and genetic data), and it is not performance driven (i.e., we do not
cherry-pick the values to optimize prediction accuracy). The corresponding values for
all the experiments are: A\; = 0.1, Ay = 0.1, A\3 = 0.01, A\, = 0.1, and A5 = 0.01. We fix
the Bernoulli probability, to ¢ = 0.001 and the temperature variable to ¢ = 0.1. Based
on 10-fold cross validation results we fix all detection threshold values to 7; = 0.1.

The architecture of our model (layer sizes and nonlinearities) is shown in Fig. 4-2.

4.2.7 Baseline Comparison Methods

We compare G-MIND to classical machine learning techniques and architectural

variants that omit key features.

e Multimodal Support Vector Machine (SVM): We construct a linear SVM

classifier after concatenating all the data modalities [i1 41, g”]”. Notice that this
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model cannot handle missing data. Therefore, we fit a multivariate regression to
impute missing imaging modalities based on the available one for each subject.
For example if 47 is absent, we impute it as: 4] = 815, where 3 is the regression
coefficient matrix obtained from training data. We use a grid search method to
find the best set of hyper-parameters. Notice that this tuning provides an added
advantage for SVM over G-MIND.

Multimodal CCA 4 RF: Canonical correlation analysis (CCA) identifies
bi-multivariate associations between imaging and genetics data. This approach
is similar to our coupled latent projection, but the traditional CCA does not
accommodate more than two data modalities. In order to overcome this we
concatenate the imaging features obtained from two experimental paradigms
and perform CCA with the genetics data. We then construct a random forest
classifier based on the latent projections. We use the same approach for data

imputation and to find the best set of hyperparameters.

Encoder Only: We compare our model to an ANN architecture based on the
encoder and the classifier of G-MIND. This comparison will show us importance

of using the decoder and the learnable dropout layer.

Encoder+Dropout: We compare our model to another ANN architecture
where we only used the encoder, the classifier, and the learnable dropout layer.
This experiment will show us the performance improvement from including
a decoder. Based on our 10-fold cross validation we fix the learned dropout

threshold values to {r;, = 0.05,7;, = 0.05,7, = 0.1}.
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Table 4-I11. Testing performance of Figure 4-4. Distribution of accuracies by
each method on LIBD during 10 fold the models trained in all 10 CV folds, when
cross validation. directly evaluated on BARI.

4.3 Experimental Results

4.3.1 Data and Preprocessing

Our first dataset includes two task fMRI paradigms and SNP data provided by Lieber
Institute for Brain Development (LIBD) in Baltimore, MD, USA. The first fMRI
paradigm is a Nback working memory task and the second fMRI paradigm is an
event-based simple declarative memory task (SDMT). Our replication dataset includes
just Nback and SNP data acquired at the University of Bari Aldo Moro, Italy (BARI).
The distribution of the subjects is shown in Table 4-1. The fMRI acquisition and the
preprocessing are described in Section 2.4.1. We use the Brainnetome atlas [143] to
define 246 cortical and subcortical regions. The input to our model is the contrast

map over these ROIs.

In parallel, genotyping was done using variate [llumina Bead Chips including
510K/ 610K /660K /2.5M. After quality control (Section 2.4.1), the 102K linkage
disequilibrium independent SNPs are further subselected based on a GWAS p-value
threshold of P < 10~%. The resulting 1242 linkage disequilibrium independent SNPs
are used as inputs to the model. As a preprocessing step, we remove the effect of age,
IQ, and education from the imaging modalities, and we have mean centered all the

data modalities.
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4.3.2 Model Performance

Table 4-1I quantifies the 10-fold testing performance of all the methods on multimodal
data obtained from LIBD. We can clearly see that G-MIND achieves the best overall
accuracy. KEven in the presence of missing data our multi modal approach can
successfully extract meaningful information from all the data modalities that are
essential for diagnosis prediction. Our results also show the importance of the decoder

and the dropout layer.

In order to show the generalizability of our method, we trained our model on
LIBD data and tested it without fine-tuning on a cross-site dataset from BARI. This
experiment captures the transference property of our model. We note that the SDMT
task was not acquired at BARI, so the corresponding branch of G-MIND is not used.
We evaluate the 10 best models obtained from the 10 different folds to run this
experiment. Fig. 4-4 shows the distribution of accuracies of all the models in the
form of a boxplot. Here we can see that our method shows the best transference
property compared to all the baselines. This is an interesting result as it shows the
robustness of our model against data acquisition noise and population-specific noise.
This performance gain further suggests that the learnable dropout mask can identify

a robust set of features most predictive of the disease.

(a) Nback (b) SDMT

Figure 4-5. The representative set of brain regions as captured by the dropout probabilities
{p1,P>}. The color bar denotes the median value across 10 folds.
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Figure 4-6. The surface plot of the brain regions as captured by the dropout probabilities
{p;, P>} The color bar denotes the median value across 10 folds. From Left to Right
the images are internal surface of left hemisphere (L—IN), external surface of left hemi-
sphere (L—-OUT), internal surface of right hemisphere (R—IN), and external surface of
right hemisphere (R-OUT).
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4.3.3 Analysis of Imaging Biomarkers

Fig. 4-5 illustrates the most important set of brain regions as identified by the median
concrete dropout probability maps {p, ,p;,} across the 10 validation folds. We further
show a more global picture of the high importance brain regions as a surface plot
in Fig. 1-6. Both from Fig. 4-5 and Fig. 4-6 for the Nback task, we can see regions

that include superior frontal gyrus (SFG), and inferior frontal gyrus (IFG), which
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Figure 4-7. The level of association with different cognitive states of all the brain regions
identified by our model as found in the Neurosynth database.
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Figure 4-8. The median importance map Table 4-111. The enriched biological pro-
of all the SNP across and their overlapping cesses and their level of significance ob-
genes across the 10 folds. tained via GO enrichment analysis.

are known to sub-serve executive cognition [1]. Moreover, we can see regions (SFG,
IFG) from the dorsolateral prefrontal cortex [4] and regions (SPL, STG) from the
posterior parietal cortex that overlaps with the fronto-parietal network, which is
known to be altered in schizophrenia. Further clusters incorporate components of the
default mode network also implicated in schizophrenia [161]. The SDMT biomarkers
implicate the hippocampal, parahippocampal, and superior frontal regions along with
the anteromedial thalamus, which are also affected in schizophrenia [3]. These regions
control executive cognition and memory encoding and that are also known to be

associated with the disorder.

We further use Neurosynth [162] to decode the higher-order brain states of the
biomarkers associated with Nback and SDMT tasks. This analysis allows us to
quantitatively compare the selected brain regions with previously published results
and gives us a level of association with different brain states as identified by other
studies. Fig. 4-7 shows the Neurosynth terms that are strongly correlated with our
biomarkers. We note that the terms associated with the Nback task correspond to
recognition and solving, while the brain states for SDMT are associated with emotions
and memory encoding. These results provide further evidence that G-MIND can
extract potential imaging biomarkers that are highly relevant to the task and the

disorder under study.
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4.3.4 Analysis of Genetic Biomarkers

Fig. 4-8 shows the importance map across the 1242 SNPs as computed by the median
p, across the 10 folds. We annotated each SNP based on its overlapping or nearest
gene as found from the SNP-nexus web interface [163]. In addition, we ran a gene
ontology enrichment analysis of the overlapping genes of the top 300 SNPs to identify
the enriched biological processes [142]. This enrichment analysis allows us to identify
the set of over-represented genes in a biological pathway that may be associated with
the disease phenotype. Table 4-111 captures the most significant biological processes
implicated by the set of SNPs, which include the nervous system development [183],
and calcium ion regulation [184] which are known to be strongly associated with
schizophrenia. As parallel to Neurosynth analysis, we perform a gene expression
based analysis [164] over the 10 overlapping (or nearest gene if there is no overlap)
genes of the top SNPs identified from our analysis. Here we use the GTEx database
to identify the set of brain tissues where these genes show high levels of expression.

This exploratory analysis may help us to understand the cis-effects of the SNPs and
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Figure 4-9. The gene expression pattern of the selected set of genes in different brain
tissues based on the GTEx database. Higher level of a gene expression in a brain tissue
imply that alteration in that gene may have a stronger effect on those specific brain regions.
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how they alter the functionalities of genes expressed in different tissues of the brain.
Fig. 4-9 shows the gene expression pattern of each gene across different brain tissues.
Here, LINC00599 shows high expression levels in brain and are also known to be
associated with schizophrenia [168] and neuroticism [165]. These findings show that
the model can be used to explore potential genetic biomarkers and their interactions

in a multivariate framework.

4.4 Discussion

We introduce a novel autoencoder that combines interpretability and multimodal data
integration in a deep learning framework. The first key contribution of GMIND is
the Bayesian feature selection strategy that allows us to jointly learn the biomarkers
in an end-to-end data driven fashion. The feature selection layer is added to the
encoder via a learnable dropout layer. Unlike traditional dropout, the continuous
relaxation between the underlying probability map and the dropout mask allows us to
train the model using straightforward gradient descent-based approaches. Adding a
dropout layer requires minimum changes to the deep learning model, which makes this
approach adaptable to other neural network architectures. Additionally, the Bayesian
framework provides a probabilistic measure of the importance of each feature. The
probabilistic interpretation allows us to compare feature importance across different
populations and experiments. In contrast, standard heuristic-based feature selection
methods provide a relative score that cannot be compared across experiments due to

a lack of probabilistic intuitions.

The second key contribution of our approach is the autoencoder framework. The
autoencoder architecture provides a robust and adaptable framework to integrate new
data modalities [185] simply by adding new encoder-decoder branches. Mathemat-
ically, a new branch will introduce another term to the loss function but does not

alter the optimization procedure (e.g., backpropagating gradients)[186]. In addition,
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missing data can easily be handled by freezing the affected part of the network [128]
and updating the remaining weights. This simplicity starkly contrasts the classical
methods [11, 48, 61], where the entire model and optimization procedure must be

changed for each new modality and missing data configuration.

One limitation of this approach is that we heavily rely on the subselection of genetic
variants to make our model stable and prevent overfitting. However, neuropsychiatric
disorders are polygenic [16, 17, 38|, which means the genetic risk is spread across the
whole genome. The subselection step ignores the majority of the variants and fails to
account for the complexity of the genetic architecture associated with neuropsychiatric
disorders. In the following two chapters, Chapter 5,6, we will provide strategies
and tools to parse the complexity of the genetic risk by identifying target loci and

pinpointing discriminatory pathways.

4.5 Summary

We have presented G-MIND, a novel deep network to integrate multimodal imaging
and genetic data for targeted biomarker discovery and class prediction. Our unique
use of learnable dropout with a classification module helps us to identify discriminative
biomarkers of the disease. Our unique loss function enables us to handle missing
modalities while mining all the available information in the dataset. We demonstrate
our framework on fMRI and SNP data of schizophrenia patients and controls from
two different sites. The improved performance of G-MIND across all the experiments
shows the capability of this model to build a comprehensive view of the disorder
based on incomplete information obtained from different modalities. We note that our
framework can easily be applied to other imaging modalities, such as structural and
diffusion MRI simply by adding autoencoder branches. In future work, we will develop
a hybrid extension of G-MIND in which we incorporate pathway-specific information

into the deep learning architecture for a better understanding of disease propagation.
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Chapter 5

Identifying Genetic Biomarkers
from GWAS Summary Statistics

The genetic risks associated with neuropsychiatric disorders like schizophrenia and
autism are highly complex and polygenic. Although the genetic architectures of
schizophrenia and autism are still elusive, evidence suggests they involve many genes [16,
37] and are distributed across pathways [187]. The common approach to identifying
the risk loci is using Genome Wide Association Studies (GWAS). The recent GWAS
in schizophrenia has identified 287 risk loci [37], where each variant only explains a
tiny proportion of risk for schizophrenia. GWAS provides regions of high importance
in the DNA but fails to identify the target variants. Pinpointing the causal variants is
essential to discovering their downstream regulatory effect on gene expression profiles
and biological processes. In addition, as described in Section 2.2.3.1, the univariate
nature of GWAS leads to inflation of effect sizes due to the correlation structure
present between the variants [43]. The inflated effects often result in many false

positives.

This drawback is addressed in finemapping approaches [40, 88]. Fine-mapping
provides a way to uncover genetic variants that causally affect some trait of interest
while considering the correlation structure of the data [88, 89]. In the space of

finemapping, Bayesian finemapping approaches [39, 86, 95, 96] provide the posterior
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probability of a variant being causal given the GWAS summary statistics data. In
addition, they also provide small subsets of causal genetic variants [38, 89]. These
subsets, known as credible sets, capture the uncertainty of finding the true causal
variant within a highly correlated region [90]. Unlike p-values, the corresponding
posterior inclusion probabilities (PIPs) computed during fine-mapping can be compared

across studies of different sample sizes.

Current Bayesian fine-mapping approaches take into account the correlation struc-
ture between the genetic variants, but they are often computationally intensive to run
and cannot handle spurious effects from non-causal variants. In this paper, we intro-
duce a novel framework for Bayesian fine-mapping from GWAS summary data. We
extend the idea of Binary concrete vectors described in Section 4.2.1. In our approach,
we impose the binary concrete prior over the causal configurations that can handle
spurious non-causal effects and infer the posterior probabilities of causal configuration.
In a simulation study, we demonstrate that our model achieves comparable or better
performance to the current fine-mapping methods across increasing numbers of causal

variants and increasing noise, as determined by the polygenecity of the trait.

5.1 BEATRICE: Bayesian Fine-mapping from Sum-
mary Data using Deep Variational Inference

5.1.1 Generative Assumptions of Fine-mapping

BEATRICE is based on a generative additive effect model. Formally, let y € R™*!
denote a vector of (scalar) quantitative traits across n subjects. The corresponding
genotype data G € R"™™ is a matrix, where m represents the number of genetic
variants in the analysis. Without loss of generality, we assume that the columns

of G have been normalized to have mean 0 and variance 1, i.e., %Zi G;; =0 and
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L5 G?% =1for j =1,...,m. The quantitative trait is generated as follows:
n 4=t “Tij J q g

1
y=GB+n UNN(O,THH), (5.1)

where 8 € R™*! is the effect size, n € R™*! is additive white Gaussian noise with

variance %, and I, is the n x n identity matrix.

5.1.2 Genome Wide Association Studies (GWAS)

GWAS uses a collection of element-wise linear regression models to estimate the effect
of each genetic variant. Mathematically, the GWAS effect sizes are computed as B =
%GTy, with the corresponding vector of normalized z-scores equal to z = \/%GTy [85,
86]. The derivations are provided in Section 2.2.2. The main drawback of GWAS is
that non-causal genetic variants can have large effect sizes due to polygenicity of the
quantitative trait [188], varying degrees of linkage disequilibrium (LD) with causal
variants [43], and/or interactions of the variant with enriched genes [188]. One popular
strategy to mitigate this drawback is to impose a sparse prior over (3 given the set of

causal variants:

1

B~ N(0, ;0220) (5.2)
0, 1#]
Soli. ) 1, 7=7 and 7 is causal (5.3)
/1/7 = . . . .
ot €, =7 and 7 is non-causal with non-zero effect
0, otherwise

Notice from Eq. (5.3) that the variance of (i) for a causal variant is ”72 and

. . . . . 2 .
the variance of (i) for a non-causal variant with non-zero effect is €Z-, where € is
assumed to be small. This formulation handles residual influences from the non-causal
variants, which are often observed in real-world data. Under this assumed prior, we

can show [36, 189] that the normalized GWAS effect sizes z are distributed as:

p(2/Ex,%¢) = N (2;0,3x + x (no” E¢) x) (5.4)
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Figure 5-1. Overview of BEATRICE . The inputs to our framework are the LD matrix 3 x
and the summary statistics z. The inference module uses a neural network to estimate
the underlying probability map p. The random process generates random samples ¢! for
the Monte Carlo integration in Eq. (5.12). Finally, the generative module calculates the
likelihood of the summary statistics from the sample causal vectors c'.

where Xy = %GTG is the empirical correlation matrix of the genotype data, also
known as the LD matrix. Broadly, the goal of fine-mapping is to identify the diagonal
elements of ¥ that corresponds to 1 given the effect sizes z and the LD matrix 3.

The derivation is provided in Section 2.2.3.2.

5.1.3 The Deep Bayesian Variational Model

BEATRICE uses a variational inference framework for fine-mapping. For convenience,
we represent the diagonal elements of ¥ by the vector ¢ € R™*! and by construction,
c encodes the causal variant locations. Fig. 5-1 provides an overview of BEATRICE .
Our framework consists of three main components: an inference module, a random
sampler, and a generative module. The inputs to BEATRICE are the summary
statistics z and the LD matrix 3 x. The inference module estimates the parameters p
of our proposal distribution ¢ (+; p, \) using a neural network. The random process
sampler uses the parameters p to randomly sample potential causal vectors ¢ according
to the given proposal distribution. Finally, the generative module calculates the

likelihood of the observed summary statistics z according to Eq. (5.1).
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5.1.3.1 Proposal Distribution

The goal of fine-mapping is to infer the posterior distribution p(c|{z, Xx}), where ¢
corresponds to the diagonal elements of 3. Due to the prior formulation in Eqs. (5.2-
5.3), solving for the true posterior distribution is computationally intractable, as it
requires a combinatorial search over the possible causal configurations. Thus, we
approximate the posterior distribution p(c|{z,¥x}) with a binary concrete distribu-
tion ¢(c; p, A) [178], where the parameters p of the distribution are functions of the
inputs {z, Xx}. Samples ¢ generated under a binary concrete distribution can be
viewed as continuous relaxations of independent Bernoulli random variables. This
reparametrization [179] allows us to learn p from the data using standard gradient

descent.

Formally, let ¢; and p; denote the ith element of the vectors ¢ and p, respectively.

Each entry of ¢ is independent and is distributed as follows:

A1 _ o — )Ml
q(ei;p;, A) = )\piCi)\ et ]G d 29 (5.5)
(e + (1 =p)(1 - o))

where the parameter A controls the extent of relaxation from a Bernoulli distribution.

We can easily sample from the binary concrete distribution in Eq. (5.5) via

¢ =¢ (log (r) ilog (&i)) ) (5.6)

where £(-) is the sigmoid function, and the random variable U is sampled from a
uniform distribution over the interval [0,1]. As seen, p, specifies the underlying
probability map and U provides stochasticity for the sampling procedure in Eq. (5.6).
We note that the gradient of Eq. (5.6) with respect to p; tends to have a low variance
in practice, which helps to stabilize the optimization. Fig. 5-2 shows the change in
binary concrete values (¢;) with varying degree of U, p, and . As shown in Fig. 5-2(a)
smaller values of A lead to progressively discretized c;, while larger values provide

a smoother mapping. In Fig. 5-2(b) we show how the joint relationship between p,
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Figure 5-2. Properties of the binary concrete distribution. (a) Relationship between ¢;
and U for different values of A. (b) The change in ¢; for varying probability map value
p, and uniform noise U. The darker and brighter colors represents c; close to 0 and 1,
respectively.

and the sampled uniform random variable U generates the binary concrete random
variable ¢;. As seen, higher values of p, push ¢; closer to 1, irrespective of the uniform

random variable.

Intuitively, every element of the binary concrete random vector ¢ can be regarded
as a continuous relaxation from a Bernoulli random (Fig. 5-2(a)). Specifically, the
parameter p captures the underlying probability map, analogous to the selection
probability of a Bernoulli distribution. The parameter A controls the extent of
relaxation from the 0/1 Bernoulli distribution, such that increasing A results in a
smoother transition between the extremal values {0, 1}. This continuous representation
allows us to model the infinitesimal effects of the non-causal variants. Additionally, the
underlying probability map p captures the relative importance of a variant containing
a causal signal. The two unique properties of the probability maps are P(¢; > %) =p;
and limy_,o P(¢; = 1) = p,. The first property indicates that p, controls the degree
to which ¢; assumes low values close to 0 and high values close to 1. This property
also give BEATRICE flexibility to handle genetic variants with different levels of
association, thus aligning with our generative process that assumes some non-causal

variants may have small, non-zero effects. The second property implies that a high
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probability p, (Fig. 5-2(b)) at location i is highly indicative of a causal variant. Taken
together, the binary concrete distribution has an easily-optimized parameterization

with desirable properties.
5.1.3.2 Variational Inference

We select the variational parameters {p, A} to minimize the Kullback—Leibler (KL)
divergence between the proposal distribution and the posterior distribution of the

causal vector ¢ given the input data {z, ¥x}, that is
{p", '} = argmin KL (g(e;p, ) || plel{z, Ex})) (5.7)
Using Bayes’ Rule, we can show that the optimization in Eq. (5.7) can be rewritten

{p". X'} = arg ggig KL (q(c;p, M) || p(e; po, X)) — By log (p(2|Xx,€))], (5.8)

where we have assumed an element-wise binary concrete prior p(¢; py, Ag) over the
vector ¢. We fix the relaxation parameter to be small (A = 0.01) and the probability
map to be uniform p, = [%, e %}T Thus, the first term of Eq. (5.8) can be viewed
as a regularizer that encourages sparsity in causal vectors ¢. The second term of
Eq. (5.8) can be interpreted as the likelihood of the observed test statistics. The works
of [190, 191] have demonstrated that under certain assumptions, the likelihood term
of the summary statistics is the same as the original data likelihood p (y|G, ¢) derived
from Eq. (5.1).

During optimization, the relaxation parameter A is annealed [178, 179] to a small
non-zero value (0.01) with a fixed constant rate, and the underlying probability map p
is optimized using gradient descent. Specifically, we use a neural network to generate
the vector p = F(z;¢). The details of the neural network architecture are provided
Fig. 5-3. The neural network estimates the parameters p of our proposal distribution

q (+; p, \) using backpropagation during optimization. Practically speaking, the neural

network ties the input data {z, X x } to the parameter space of the proposal distribution
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Figure 5-3. Neural network architecture for the inference module used in BEATRICE .
The neural network uses a sequence of linear layers, layer normalization, and activation
layers. The dimensions of the linear layers are shown on top of each layer. The input to
the inference module is the normalized z-scores obtained from GWAS. The output of the
inference module is the estimated parameters of our binary concrete distribution.

in a data-driven fashion. Empirically, we find that generating p as a function of the

input data regularizes the model and leads to a stable optimization.

Optimizing p* now amounts to learning the parameters of the neural network ¢.
Given a fixed value of A, the neural network loss function follows from Eq. (5.8)

according to

L(9) = KL (q(e;p(9), ) || p(€;Po; X)) = Eqtpio) [log (p(2[Zx5 )], (5.9)
where we have defined p(¢) = F(z; ¢) for notational convenience.
5.1.3.3 Optimization Strategy

The expectations in Eq. (5.9) do not have closed-form expressions. Therefore, we use
Monte Carlo integration to accurately approximate £(¢) in the regime of small A, i.e.,

when the binary concrete distribution behaves similar to a Bernoulli distribution.

101



Let c!(9), ..., c"(¢) be a collection of causal vectors sampled independently from

q(-|p(¢), A) according to Eq. (5.6). The likelihood term of Eq. (5.9) is computed as

Eypio). [log (p(2]Sx, €))] = iglog (r(21Zx,€(9)) (5.10)

where the right-hand side probability is computed according to Eq. (5.4) by substituting
cl(¢) for the diagonal entries of ¥¢ in each term of the summation. Once again, the
continuous relaxation used to generate c!(¢) in Eq. (5.6) allows us to directly optimize
0.

We approximate the first term of Eq. (5.9) under the assumption of small {\, \o}
on the order of 0.01. In this case, the binary concrete distribution behaves like a {0, 1}
Bernoulli distribution. Under these conditions, we can write the first term of Eq. (5.9)

as

KL (q(e;p(9), A) | p(e: Py, M)
~ f:l lpi(cb) log (%?) + (1 = pi(9)) log (1_p(¢)ﬂ : (5.11)

where py is a fixed scalar parameter used to construct the (constant) prior vector p,.
We note that the criteria {\ — 0.01, \p = 0.01} is satisfied in practice, as A is annealed
during the optimization to progressively smaller values and \q is fixed a priori.

The above approximations allow us to rewrite the neural network loss as

£(p) ~ 2

|

ZlogN (z; 0,Sx + Xx (n o2 Zlc(gb)) EX)
+3pi(0)los (”;‘”) £ (1 py())log (1‘”(@) RNCEC)

where 3L (¢) corresponds to the diagonal matrix using the vector c'(¢) as the diagonal
entries. We use a stochastic gradient descent optimizer [192] to minimize the loss £(¢)

with respect to the neural network weights ¢. This process is detailed in Algorithm 3.
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Algorithm 3 Optimization scheme to minimize Eq. (5.12)

B = {}

Initialize ¢q

fort=[1...7] do
Generate p(ér) = F(2; ¢1)
Randomly sample ¢l according to Eq. (5.6)
Binarize ¢! to b) and add to B
S! = {i} st. (i) >0.01
Prune set S! such that it consists of 50 indices.
cl(i)=0ifi ¢ S!
Generate L£(¢;) according to Eq. (5.12)
Prr1 = ¢ — StepSizeVL(¢')

5.1.3.4 Computational Complexity

Each iteration of stochastic gradient descent requires us to compute the data log-
likelihood term {logN (z; 0,Xx +X3x (n o? Elc(gb)) EX)}. This computation is ex-
pensive due to the covariance matrix inversion, whose run-time is on the order of
O(m?), where m is the total number of variants. To mitigate this issue, the works
of [193] show that if XL (¢) is sparse, then the matrix inversion can be done with
order O(k?) + O(mk?) run-time, where k is the number of non-zero diagonal elements
of Elo(qb). We leverage this result in the optimization by thresholding the elements
of c!(¢) to set small values exactly to zero. In every iteration, we sparsify c. by
considering the top 50 non-zero locations of ¢! with values k(i) > 0.01. This strat-
egy provides a way to optimize the parameters of our models in O(50%) + O(m50?)
run-time for all scenarios. We also regularize ¥ x with a small diagonal load to ensure
invertibility of the covarance matrix at each iteration. Finally, we run stochastic
gradient descent with a batch size of one to further speed up BEATRICE. Effectively,
this means that we sample a single ¢'(¢) at each epoch rather than perform a true
Monte Carlo integration. The authors of [192] have previously shown that a single
random sample (L = 1) is sufficient to guarantee convergence to a local minimum of

Eq. (5.12). Algorithm 3 provides a detailed description of these optimization steps.
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5.1.4 Verification and Comparison

5.1.4.1 Causal Configurations and Posterior Inclusion Probabilities

The desired outputs of each fine-mapping method are Posterior Inclusion Probabil-
ities (PIPs) and credible sets. PIPs estimate how likely each variant is causal as a
measure of its importance. Credible sets identify the subset of variants that are likely

to contain a causal variant, which captures the uncertainty of finding the true variant.

The main challenge to estimating the posterior probability of a given causal
configuration (i.e., set of causal variant locations) is the exponentially large search
space. Let b denote a binary vector with a value of 1 at causal locations and a value of
0 at non-causal locations. At a high level, b can be viewed as a binarized version of the
causal vector ¢ in the previous sections. Using Bayes’ Rule, the posterior probability

of b given the input data {z, Xx} can be written as follows:

p(blz,Xx) = p(z|Xx,b)p(b)

— 5.13
S vesp (215x. ) p (0) (5:13)

where B is the set of all 2™ possible causal configurations. Once again, z captures
the summary statistics and Xy is the LD matrix. Even though B is exponentially
large, it has been argued [194] that the majority of these configurations have negligible

probability and do not contribute to the denominator of Eq. (5.13).

Our stochastic optimization provides a natural means to track causal configurations
with non-negligible probability to compute p (b|z, X x). Namely, at each iteration
of stochastic gradient descent, we randomly generate a sample causal vector ¢’ to

minimize Eq. (5.12). In parallel, we binarize the vector ¢ via

b 1, c§>7,

0, otherwise

and add the resulting vector b' to a reduced set of causal configurations B%. The

variational objective ensures that our proposal distribution converges to the true
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posterior distribution of the causal vectors. Thus, the samples ¢’ lie near modes of

the posterior distribution which is the neighborhood of non-negligible probability.

In this work, we use a threshold v = 0.1 to binarize the vectors ¢!. Thresholding at
v = 0.1 only considers variants whose estimated effect size variance is > 0.1¢2. This
operation prunes out spurious non-causal configurations generated by the non-causal
variants. A higher threshold is beneficial in presence of high interaction effects from
non-causal variants and a lower threshold could be useful when the causal variants are
weakly associated with the outcome. Empirically, we find that the threshold value of
0.1 preserves the main interactions between variants. However, the user of BEATRICE

can adjust this threshold as needed.

After obtaining the sampled vectors, we replace the exhaustive set B in Eq. (5.13)
with the reduced set B for tractable computation of p (b|z, Xx). We then compute
the posterior inclusion probability (PIP) of each variant by summing the probabilities

over the subset of Bf with a value of 1 at that variant location. Mathematically,

P(b;=1]z,Zx) ~ Y _p(blz,Zx) (5.14)
bes
st. SCcB¥and S = {b|b; =1} (5.15)

where S is a subset of B® that contains binary configurations with 1 at location i.
5.1.4.2 Identification of Credible Sets for BEATRICE

One of the notable features of BEATRICE is its ability to identify a comprehen-
sive set of causal configurations with non-negligible posterior probability within the
exponentially large search space. As described in the previous section, the reduced
search space B is comprised of vectors that BEATRICE randomly samples at each

iteration of the optimization. We identify credible sets from B in two steps.

First, in a sequential fashion, we identify the “key” variant with the highest

conditional probability given the previously selected variants. Formally, let C be the
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Algorithm 4 Algorithm to find credible sets

K={}
S ={}
Estimate posterior probabilities accoding to Eq. 5.16.
while maz [P(b;|KC, z,Xx) | Vi ¢ K] < Yyey do
K =K Uargmax [P(b;|K, 2z, %) x | Vi ¢ K]
Estimate posterior probabilities accoding to Eq. 5.16.
for k£ € K do
S={}
cov =0
Generate K’ by removing k for “key” set.
fori=1[1,...,m]and i ¢ K' do
Estimate posterior probability according to Eq. 5.17
Stack the probabilty scores in a vector P.

while maz [P; | Vi & K'| > Yselection and cov < Yeoperage dO
S =S Uargmax [P; | Vi ¢ K|
cov = cov +mazx [P; | Vi ¢ K']

Add S to CS as credible set of k.

indices of previously identified “key” variants. The conditional probability for variant ¢

given K in each iteration can be calculated as follows:

_ Zbecp(b|Z72X)
Yyep P (V]2z,Xx)

P(b; = 1K, z,3x) (5.16)

st. DCB¥and D= {blb; =1V j €K}
CcBfandC={bb;=1Vjc{i}uk}
where, D is the subset of Bf that includes all of “key” variants and C is the subset of
Bf that includes both variant i and the “key” variants.

We perform this sequential variant selection until the maximum posterior proba-
bility reduces below a threshold, which we define as the “key” threshold 74, and fix
at Ygey = 0.2 for all experiments. We note that this threshold can be controlled by

the user. The selected “key” variants act as proxy for highly plausible causal variants.

In the second step, we identify the set of variants that can replace the “key” variant
in the causal configurations while maintaining a high posterior probability. This set

of variants act as a credible set for that particular “key” variant. To do this, we first

106



remove one of the key variants from K and estimate the posterior probability of other
variants given the remaining “key” variants. For example, let variant k; be a “ key”

variant. We estimate the posterior probabilities as follows:

o Zbeg P (b|Z, 2X)

P bizllC/,z,E =
(b = 1K 2.5 = &= = 5 ]z, 5x)

(5.17)

s.t. K= IC/ U {k’l}
G={blb;=1Vje{i}UK'}

HCB¥and H={blb;=1VjecKk'}

where K’ is the set of “key” variants without k;, G is the set of configurations that
include both variant 7 and the remaining “key” variants, and and H is the set of causal

configurations that include all “key” variants except k.

Once computed, we sort these posterior probabilities in descending order and
add the variants to the credible set until the cumulative sum reaches the coverage
threshold Yeoperage- We fix the coverage threshold at v, = 0.95 in this work, but it
too can be set by the user. Finally, we prune uncorrelated variants by thresholding
the posterior probability according to the selection threshold Yseiection = 0.05, again
a tunable parameter for users. Algorithm 4 provides a detailed description of these

steps.
5.1.4.3 Baselines

We compare our approach with the state-of-the-art methods, FINEMAP-v1.4.1 and

SuSiE-v0.12.27.

FINEMAP: This approach uses a stochastic shotgun search to identify causal
configurations with non-negligible posterior probability. FINEMAP defines the neigh-
borhood of a configuration at every step by deleting, changing or adding a causal

variant from the current configuration. The next iteration samples from this neighbor-
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hood, thus reducing the exponential search space to a smaller high-probability region.
The identified causal configurations are used to determine the posterior inclusion
probabilities for each variant. In addition, FINEMAP outputs a collection of credible
sets under the assumption of multiple causal variants d = 1,...,D. Similar to the
approach used in [96], we sub-select the credible sets from this collection with the
highest posterior probability. From here, we pruned the sets with minimum absolute
purity greater that 0.5. As defined in [96], purity is the pairwise correlation coefficient
between the variants, obtained from the LD matrix. The computationally efficient
shotgun approach makes FINEMAP a viable tool for finemapping from multiple
GWAS summary data in [37, 195]. We implement FINEMAP using the stochastic
shotgun approach. During implementation, we fix the number of causal variants to
20 and the rest of the hyperparameters are fixed to default values, as described in

http://christianbenner.com/

SuSiE: The recent works of [53, 96] introduced an iterative Bayesian selection
approach for fine-mapping that represents the variant effect sizes as a sum of “single-
effect” vectors. Each vector contains only one non-zero element, which represents the
causal signal. In addition to finding causal variants, SuSiE provides a way to quantify
the uncertainty of the causal variants locations via credible sets. SuSiE has also been

used widely to find putative causal variants GWAS summary statistics [196, 197].

During the implementation of SuSiE, we provide the un-normalized effect sizes (/3),
the Standard Error (SE) of the effect sizes, the LD matrix, the phenotype variance,
and the number of samples. Additionally, we fix the number of causal variants to 20
and we estimate the residual variance. The rest of the hyperparameters are fixed to

default values, as described in stephenslab.github.io.
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5.1.4.4 Evaluation Strategy

We evaluate several metrics of performance in our simulation study.

Area Under Precision Recall Curve (AUPRC): We have compared the quality
of the PIPs via the AUPRC metric. AUPRC (area under the precision-recall curve)
is computed by sweeping a threshold on the PIPs and computing precision and
recall against the true configuration of causal and non-causal variants. High precision
indicates a low false positive rate in the estimated causal variants. High recall indicates
that the model correctly identifies more of the causal variants. Thus, the AUPRC,
can be viewed as a holistic measure of performance across both classes. AUPRC is
also robust to severe class imbalance [198], which is the case in fine-mapping, as the

number of causal variants is small.

Coverage, Power and Size of the Credible Sets: We follow the strategy of [53,
96] to define a credible set. A credible set is defined as a collection of variants that
contain a single causal variant with a probability equal to the coverage. Given that
the number of causal variants can be arbitrary, we use two metrics to assess the
quality of the credible sets. Specifically, coverage is the percentage of credible sets
that contain a causal variant, and power is the percentage of causal variants identified
by all the credible sets. Higher coverage indicates that the method is confident about
its prediction of each causal variant, whereas higher power indicates the method can
accurately identify all the causal variants.

One caveat is that a method can generally achieve both higher coverage and higher
power simply by adding variants to the credible sets. To counter this trend, we report
the average size of the credible sets identified by each method. Ideally, we would like
the credible sets to be as small as possible while retaining high coverage and high

power.
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5.1.5 Applications

5.1.5.1 Experimental Setup

Genotype Simulations: We use the method of [199] to simulate genotypes G based
on data from the 1000 Genomes Project. We select an arbitrary sub-region (39.9Mb —
40.9Mb) from Chromosome 2 as the base. After filtering for rare variants (MAF
< 0.02), the remaining 3.5K variants are used to simulate pairs of haplotypes to
generate 10,000 unrelated individuals. We chose a MAF threshold of 0.02, as it lies in
the middle of the range 0.01 — 0.05 commonly used in GWAS studies [200]. In each
experiment below, we randomly select m = 1000 variants and n = 5000 individuals to

generate the phenotype data.

Phenotype Generation: We generate the phenotype y from a standard mixed
linear model [190], where the influences of the causal variants are modeled as fixed
effects, and the influences of other non-causal variants are modeled as random effects.
In this case, the genetic risk for a trait is spread over the entire dataset, with
each variant having small individual effects, as per the polygenicity assumption of a
complex trait. We randomly select the causal variants in our simulations. Thus, some
simulations will have causal variants in LD, while others will select causal variants

with low correlation.

Given a set of d causal variants C, let Go € R™“ denote the corresponding subset

of the genotype data and Gy¢ € R™ (=9 denote the remaining non-causal variants.
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From here, we generate the phenotype data y as follows:

y=GclB+gyo+e L gotgnete
1
m —d

dne ~ N (07 Gne G%c)

5 ~ N (Oa I[d)
e~N (0, ocz]ln)

where (3 is the d-dimensional effect sizes sampled from a Gaussian, and € is an zero-
mean Gaussian noise with variance o®. The random variable g models the effect of
the non-causal variants as a multivariate Gaussian vector with mean 0 and covariance

ﬁG NCG%C. Likewise, g~ = G¢ 3 captures the effect of the causal variants.

In our experiments, we define w? as the total phenotypic variance attributed to the
genotype (e.g., both g~ and g,) and p as the proportion of this variance associated
with the causal variants in g.. Using the strategy described in [201], we enforce these

conditions by normalizing the phenotype y as follows:

N pw? (1—p)w? .
= go | L gt e 5.18
’UCl’l“(gC) C NC ( )

E~ N(0,(1—w?1,)

where var(g.) and var(gyo) are the empirical variances of g and gy, respectively.
After generating the genotype G and the normalized phenotype g, we run a GWAS
to estimate the effect size Bl of each variant i. From here, we convert the estimated

effect sizes to z-scores via z; = se?ié)’ where se(-) denotes the standard error. The LD

matrix is computed from the genotype data as X x = %GT G. The z-scores and LD

matrix are input to each of the fine-mapping methods above.

Noise Configurations: We evaluate the performance of each method while varying

the number of causal variants d, the total genotype variance w?, and the proportion
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Figure 5-4. The performance metrics for the three methods across varying numbers of
causal variants. Along the x-axis, we plot the number of causal variants, and across the
y-axis, we plot the mean and confidence interval (95%) of each metric. We calculate the
mean by fixing d to a specific value d = d* and sweep over all the noise settings where
d=d".

of this variance associated with the causal variants p. Formally, we sweep over
one order of magnitude for d = [1,4,8,12], w? = [0.1,0.2,0.4,0.5,0.7,0.8], and p =
[0.1,0.3,0.5,0.7,0.9]. For each noise setting, we randomly generate 20 datasets by
independently re-sampling the causal variant locations, the effect sizes {;}, the non-

causal component gy, and the noise &. We run all three fine-mapping methods over

a total of 4 x 6 x 5 x 20 = 2400 configurations for a comprehensive evaluation.
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5.1.6 Results

Varying the Number of Causal Variants Fig. 5-41 illustrates the performance
of each method ( BEATRICE , FINEMAP, and SuSiE) while increasing the number
of causal variants from d = 1 to d = 12. The points denote the mean performance
across all noise configurations (w?,p) for fixed d, and the error bars represent the
95% confidence interval across these configurations. We note that BEATRICE
achieves a uniformly higher AUPRC than both baseline method, which suggests that
BEATRICE can better estimate the PIPs than FINEMAP or SuSiE. BEATRICE
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Figure 5-5. The performance metric for increasing phenotype variance explained by
genetics. Along the x-axis, we plot the variance explained by genetics (w?), and across
the y-axis, we plot each metric's mean and confidence interval (95%). We calculate the
mean by fixing w? to a specific value w = w* and sweep over all the noise settings where
w = w*.

113



also provides 0.9 — 1.4 fold increase in coverage than the baselines with similar power,
which indicates that the credible sets generated by BEATRICE are more likely to
contain a causal variant as compared to SuSiE and FINEMAP. Finally, we note that
although FINEMAP and SuSiE identify smaller credible sets, the difference in set
size between them and BEATRICE is < 2 variants. Taken together, as the number
of causal variants increases, BEATRICE gives us a better estimate of the PIPs
and arguably better credible sets. Compared to the baselines BEATRICE does not
impose any prior assumptions over the total number of causal variants, which may

lead to its improved performance.

Increasing the Genotype Contribution: Fig. 5-5 shows the performance of
each method while increasing the genetically-explained variance from w? = 0.1 to
w? = 0.8. Similar to above, the points denote the mean performance across all
configurations (d,p) for fixed w?, and the error bars represent the 95% confidence
interval across these configurations. We note that BEATRICE achieves a significantly
higher AUPRC than FINEMAP and a slightly higher AUPRC than SuSiE. When
evaluating the credible sets, we observe similar trends in coverage ( BEATRICE is
0.25 — 2.34 folds higher) and power (similar performance across methods). While the
FINEMAP and SuSiE identify slightly smaller credible, the difference to BEATRICE
is only a few variants. Taken together, we submit that BEATRICE achieves the

best trade-off across the four performance metrics.

Varying the Contributions of Causal and Non-Causal Variants: Fig. 5-
0 illustrates the performance of each method while increasing the contribution of
the causal variants from p = 0.1 to p = 0.9. Once again, the points denote the
mean performance across all configurations configurations (d,w?) for fixed p, and the
error bars represent the 95% confidence interval across these configurations. From

an application standpoint, the presence of non-causal variants with small non-zero
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Figure 5-6. The performance metric for multiple levels of noise introduced by non-causal
variants. The noise level (p) is explained by the variance ratio of non-causal variants vs.
causal variants. Along the x-axis, we plot the noise level (p); across the y-axis, we plot
each metric's mean and confidence interval (95%). We calculate the mean by fixing p to
a specific value p = p* and sweep over all the noise settings where p = p*.

effects makes it difficult to detect the true causal variants. Accordingly, we observe
a performance boost across all methods when p is larger. Similar to our previous
experiments, BEATRICE provides the best AUPRC, with converging performance
as p — 1. In addition, BEATRICE identifies better credible sets with significantly
higher coverage while maintaining power. Thus, we conclude that BEATRICE is the
most robust of the three methods to the presence of noise from non-causal variants.
This performance gain may arise from our binary concrete proposal distribution for

the causal vector ¢, which provides flexibility to accommodate varying degrees of
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Figure 5-7. Number of non-convergent runs of SuSiE-inf, as compared to BEATRICE.

association.

Additional Comparison with SuSiE-inf: SuSiE-inf is an extension of the SuSiE
model that accounts for infinitesimal effects from non-causal variants. In this section,
we compare the performance of BEATRICE with SuSiE-inf across the same simulation

setting as described in the Section 5.1.5.1 of the main text.

Unlike BEATRICE, we observe that SuSiE-inf fails to converge in multiple cases.
Specifically, Fig. 5-7 illustrates the number of experimental settings, for which SuSie-
inf fails to converge across each parameter sweep. This problem becomes prominent
with increasing SNP heritability, as explained by w?. We believe that the SuSiE-inf
algorithm, as described in the preprint [202], is still in development with multiple
issues with numerical stability.

Fig. 5-8, Fig. 5-9, and Fig. 5-10 shows the performance comparison between
BEATRICE and SuSiE-inf. We emphasize that the performance of SuSiE-inf is
computed based only on the convergent runs, so these values should be treated as
optimistic. In contrast, the performance of BEATRICE is computed across all runs, as

we did not face convergence issues with our model. Across different parameter sweeps,
we see that the coverage of SuSiE-inf is similar to BEATRICE. However, BEATRICE

achieves uniformly better power and AUPRC.

5.1.7 Discussion
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Figure 5-8. Performance metrics of BEATRICE and SuSiE-inf across varying numbers of
causal variants. The performance of SuSiE-inf is calculated over the subset of simulation
settings in which the algorithm converges; non-convergent settings are omitted from the
analysis. The x-axis corresponds to the number of causal variants, and the y-axis plots the
mean and confidence interval (95%) of each metric. We calculate the mean by fixing d to
a value d = d* and sweeping over all the noise settings where d = d*.

BEATRICE is a novel, robust, and general purpose tool for fine-mapping that can be
used across a variety of studies. One key contribution of BEATRICE over methods
like FINEMAP and SuSiE is its ability to discern spurious effects from non-causal
variants, including non-causal variants in high LD with true causal variants. Our
simulated experiments capture this improved performance by sweeping the proportion
of the observed variance attributed to causal (fixed effects) and non-causal (random
effects) genetic variants. This parameter p € [0, 1] is swept over its natural domain,
such that p = 1 implies that the only link between the genotype and phenotype

comes from the causal variants. At this extreme, Fig. 5-6 shows that all methods

117



0 1.0
1 label label
@ BEATRICE @ BEATRICE
0.8 SuSiE-inf 0.8 ) SuSiE-inf
‘/M
%
o '
9 0.6 . /‘l’—'—‘_’ ) 0.6
o ./ o
2 ' g 0.4
0.4 S s
0.2 0.2
0.0 0.0 : .
0.1 0.2 0.4 0.5 0.7 0.8 0.1 0.2 0.4 0.5 0.7 0.8
Genetic Variance (w2) Genetic Variance (wZ)
1.0 10
label label
@ BEATRICE @ BEATRICE
0.8 SuSiE-inf s SuSiE-inf
5 0.6 ! 6
2 &
o @
Q. 0.4 a
0.2 2
000 43 0.2 0.4 0.5 0.7 0.8 °
N 5 N .. 3 X 0.1 0.2 0.4 0.5 0.7 0.8
Genetic Variance (wQ) Genetic Variance (wQ)

Figure 5-9. Performance metrics of BEATRICE and SuSiE-inf for increasing phenotype
variance explained by genetics. The performance of SuSiE-inf is calculated over the subset
of simulation settings in which the algorithm converges; non-convergent settings are
omitted from the analysis. The x-axis corresponds to the variance explained by genetics
(w?), and the y-axis plots the mean and confidence interval (95%) of each metric. We
calculate the mean by fixing w? to a value w = w* and sweeping over all the noise settings
where w = w*.

achieve comparable performance. However, as p decreases, meaning that the effects of

non-causal variants increase, BEATRICE outperforms both baselines.

We further probe this behavior by illustrating the element-wise PIPs and the
credible sets identified by all three methods under two simulation settings: {d =
L,w?=02,p=09} (Fig. 5-11) and {d = 1,w? = 0.2,p = 0.1} (Fig. 5-12). As seen in
Fig. 5-11, the variance explained by the non-causal variants is small, so the causal
variant is easy to distinguish and has been correctly identified by all three approaches.
In contrast, we see in Fig. 5-12 that when the non-causal variants play a larger role,

the causal variant no longer has the maximum GWAS z-score. Here, only BEATRICE
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Figure 5-10. Performance metrics of BEATRICE and SuSiE-inf for multiple levels of noise
introduced by non-causal variants. The performance of SuSiE-inf is calculated over the
subset of simulation settings in which the algorithm converges; non-convergent settings
are omitted from the analysis. The x-axis corresponds to the noise level (p), and the y-axis
plots the mean and confidence interval (95%) of each metric. We calculate the mean by
fixing p to a value p = p* and sweeping over all the noise settings where p = p*.

correctly identifies the causal variant and assigns it the highest PIP. Both FINEMAP
and SuSiE give uncertain predictions, as captured by the large credible sets and
multiple high PIPs. We conjecture that BEATRICE takes advantage of the binary
concrete distribution to model non-causal variants with non-zero effects, while using

the sparsity term of £(-) to prioritize potentially causal variants.

A second contribution of BEATRICE is our strategic integration of neural
networks within a larger statistical framework. Specifically, we use the neural network
in Fig. 5-1 as an inference engine to estimate the parameters p of our proposal

distribution. In this case, the standard over-parameterization in the neural network
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Figure 5-11. The fine-mapping performance of BEATRICE , SuSiE, and FINEMAP at
a noise setting of {d = 1,w? = 0.2,p = 0.9}. (a) The absolute z-score of each variant as
obtained from GWAS. (b) Pairwise correlation between the variants. (c), (d), and (e) are
the posterior inclusion probabilities of each variant as identified by BEATRICE , SuSiE,
and FINEMAP, respectively. The red circle marked by an arrow shows the location of
the causal variant. We have further color-coded the variants based on their assignment
to credible sets. The non-black markers represent the variants assigned to a credible set.
Additionally, the variants in a credible set are marked by the same color.

helps BEATRICE to manage the complexity of the data while providing a buffer
against overfitting. BEATRICE leverage the continuous representation of the causal
vectors ¢ to backpropagate the gradients through the random sampler and train the
network. Additionally, the continuous representation of ¢ results in low-variance
gradients with respect to the underlying probability map, thus leading to a stable
optimization.

Related to the above point, a third contribution of BEATRICE is its ability
to efficiently build and evaluate a representative set of causal configurations during
the optimization process. This set identifies key regions of the exponential search
space to compute the PIPs and credible sets. In particular, we keep track of the

sampled vectors at every iteration of the optimization, as described in Section 5.1.4.1.
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Figure 5-12. The fine-mapping performance of BEATRICE , SuSiE, and FINEMAP at
a noise setting of {d = 1,w? = 0.2,p = 0.1}. (a) The absolute z-score of each variant as
obtained from GWAS. (b) Pairwise correlation between the variants. (c), (d), and (e) are
the posterior inclusion probabilities of each variant as identified by BEATRICE , SuSiE,
and FINEMAP, respectively. The red circle marked by an arrow shows the location of
the causal variant. We have further color-coded the variants based on their assignment
to credible sets. The non-black markers represent the variants assigned to a credible set.
Additionally, the variants in a credible set are marked by the same color.

By minimizing the KL divergence between the proposal distribution and the true
posterior distribution, we ensure that the randomly sampled causal vectors slowly
converge to the causal configurations that have non-negligible posterior probability.
Our strategy lies in stark contrast with traditional mean-field approaches, where
independence assumptions between elements of the proposal distribution do not allow
for joint inference of the causal configurations. Furthermore, this strategy allows us
to efficiently estimate the PIPs in finite run-time. Fig. 5-13 compares the average
run-time of each method across all parameter settings. We observe that the run-time
of BEATRICE and SuSiE are less than one minute. In contrast, FINEMAP requires

significantly more time to converge.

The final contribution of BEATRICE is its simple and flexible design. Importantly,
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Figure 5-13. The runtime comparison of BEATRICE , SuSiE, and FINEMAP across all
the simulation settings.

BEATRICE can easily incorporate priors based on the functional annotations of
the variants. Formally, in the current setup, the prior over c is effectively constant,
as captured by py = % We can integrate prior knowledge simply by modifying the
distribution of py across the variants. Thus, BEATRICE is a general-purpose tool
for fine-mapping. Going one step further, a recent direction in fine-mapping is to
aggregate data across multiple studies to identify causal variants [193]. Here, different
LD matrices across studies helps to refine the fine-mapping results. BEATRICE can

be applied in this context as well simply by modifying Eq. (5.12) as follows:
1 & ¢ 25l
L(9) =57 22 log (N (230, Zx, + By, (n0°5e(9)) Ex.))
s=11=1

+_pilog (Zj) +(1—pi)log<1_pi> (5.19)

1 —po

where s denotes each separate study, S is the total number of studies in the analysis,
and zg, X x, are the summary statistics for each study. In this work, we have shown
that BEATRICE is highly efficient in handling the complexity that arises due to
mutations with infinitesimal effects [188, 203]. Thus, we believe that the advantages
of BEATRICE will be more evident when considering polygenic traits and diseases.
Additionally, the high coverage and small size of credible sets reported in Fig. 5-4,
5-5, 5-6 show that BEATRICE can successfully prioritize variants in the presence of

LD. This property is in stark contrast with the baseline finemapping approaches that

generate a large number of credible sets that do not contain a causal variant. Taken
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Figure 5-14. Overview of the outputs generated by BEATRICE . (a) The PIPs are
displayed and color coded by their assignment to credible sets. (b) A table with the PIPs
and the corresponding name of the variants. (c) A text file with the credible sets. Here
each row represent a credible set and the entries are indices of the variants present in the
credible set. The first column of each row represents the key index. (d) The conditional
inclusion probability of each of the credible variants given the key variant.

together, we believe BEATRICE could be useful in eQTL studies, where multiple
variants within a locus can show strong association due to the complex LD structure
present in the human genome [54]. Additionally, there may be multiple causal variants

within a locus, which adds to the complexity of the finemapping problem [18].

Code Availability We have compiled the code for BEATRICE and its dependencies
into a docker image, which can be found at https://github.com /sayangsep/Beatrice-
Finemapping. We have also provided installation instructions and a detailed description
of the usage. The compact packaging will allow any user to directly download and
run BEATRICE on their data. Namely, all the user must specify are a directory
path to the summary statistics (i.e., z-scores), the LD matrix, and the number of

subjects. Fig. 5-14 shows the outputs generated by BEATRICE . The results are
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Figure 5-15. Coverage of the credible sets generated by the three models across multiple
causal variants d = [1,4,8,12], multiple SNP heritability w? = [0.1,0.2,0.4,0.8] and
multiple infinitesimal effects from non-causal variants p = [0.1,0.3,0.5,0.7,0.9]. Each row
and column corresponds to a specific value of w? and d, respectively. In each plot, the
y-axis captures coverage, and the x-axis represents p.

output in (1) a PDF document that displays the PIPs and corresponding credible sets,
(2) a table with PIPs, (3) a text file with credible sets, and (4) a text file with the
conditional inclusion probability of the variants within the credible sets. The user can
also generate the neural network losses describe in Eq. (5.12) by adding a flag to the

run command.

5.1.8 Summary

We present BEATRICE | a novel Bayesian framework for fine-mapping that identifies
potentially causal variants within GWAS risk loci through the shared LD structure.
Using a variational approach, we approximate the posterior probability of the causal
location(s) via a binary concrete distribution. We leverage the unique properties
of binary concrete random variables to build an optimization algorithm that can

successfully model variants with differing levels of association. Moreover, we introduce
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Figure 5-16. AUPRC of PIPs generated by the three models across multiple causal
variants d = [1,4,8,12], multiple SNP heritability w? = [0.1,0.2,0.4,0.8] and multiple
infinitesimal effects from non-causal variants p = [0.1,0.3,0.5,0.7,0.9]. Each row and
column corresponds to a specific value of w? and d, respectively. In each plot, the y-axis
captures AUPRC, and the x-axis represents p.

a new strategy to build a reduced set of causal configurations within the exponential
search space that can be neatly folded into our optimization routine. This reduced set
is used to approximate the PIPs and identify credible sets. In a detailed simulation
study, we compared BEATRICE with two state-of-the-art baselines and demonstrated
the advantages of BEATRICE under different noise settings. Finally, our model
does not have any prior on the causal variants and is agnostic to the original GWAS
study. Hence, BEATRICE is a powerful tool to refine the results of a GWAS or QTL

analysis. It is also flexible enough to accommodate a variety of experimental settings.
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Figure 5-17. Power of the credible sets generated by three models across multiple causal
variants d = [1,4,8, 12|, multiple SNP heritability w? = [0.1,0.2,0.4,0.8] and multiple
infinitesimal effects from non-causal variants p = [0.1,0.3,0.5,0.7,0.9]. Each row and
column corresponds to a specific value of w? and d, respectively. In each plot, the y-axis
captures power, and the x-axis represents p.

Additional Results

Detailed Comparison Analyses

In this section, we provide detailed comparisons of the models across individual noise

5 show the

setting without averaging the result. Fig. 5-16, Fig. 5-17, and Fig. 5-1
performance comparison of AUPRC, power and coverage, respectively. Fig. 5-15 shows
a significant improvement in coverage compared to the baselines across noise settings.
In addition, BEATRICE shows uniformly better AUPRC in Fig. 5-16. However,
in terms of power, all models exhibit similar performance. A high coverage with
comparable power suggests that BEATRICE can identify high-quality credible sets

that contain causal variants. In contrast, the baselines identify many credible that do

not contain a causal variant, ultimately leading to low coverage.
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Chapter 6

An Interpretable and Biologically
Regularized Approach to Encode
High-dimensional Genetic Data in a
Deep Learning Framework

The genetic data is high dimensional and complex. After imputation and preprocessing,
traditionally, genetic data contain ~ 300,000 LD independent [204] genetic variants.
Naive implementations of traditional regression-based models or Artificial Neural
Networks (ANN) often lead to overfitting. For example, a simple one-layer ANN with
~ 100 nodes in the hidden layer will require us to estimate ~ 3-million parameters.
To prevent this, traditional imaging genetics models use a drastically reduced set
of genetic features often based on a Genome-Wide Association Study (GWAS) [16,
17, 37] to prevent overfitting and ensuring model stability [205]. In terms of scale,
~ 300, 000 genetic variants are reduced to ~ 1000 SNPs. In contrast, neuropsychiatric
disorders are polygenetic, meaning that they are influenced by numerous genetic
variants interacting across many biological pathways. The GWAS sub-selection step

effectively removes the downstream information about these interactions [187, 200].

Within the genetics realm, there is a vast literature that associates genetic variants
and genes to different biological pathways [56, 207]. Using this information, prior

works of [57, 58] have created sparse neural networks to model genetic variants. The
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sparse ANN aggregates genetic risk according to the pathways to predict a phenotypic
variable. While an important first step, their ANN contains just a single hidden layer,
which does not account for the hierarchical and interconnected nature of the biological

processes.

The main focus of this chapter is to provide a strategically regularized framework
to encode high-dimensional genetic data while accounting for the inherent complex
interactions between biological processes. In our approach, we use graph convolutional
networks (GCNs) [131] to leverage the interconnected genetic relationships. We
construct a sparse hierarchical graph using gene ontology [56], which provides a
structurally regularized framework to encode the whole genome genotype data. In
addition, we use graph attention to track the information flow through the graph [130].
The attention mechanism focuses on the discriminative interactions between the nodes,

thus finding implicated biological processes.

The first part of this chapter is based on our published work at ICLR [64]. Here, we
use the graph-based encoding of genetic data in the imaging genetics framework. The
encoded genetic representation is combined with imaging data to predict the genetic
risk of schizophrenia. Additionally, we use the graph attention module to identify
the implicated biological processes to provide insights into the underlying biology of
the disorder. The second part of this chapter is about our ongoing work, where we
explore the uses of graph-based encoding strategy to generate genetic risk scores that
can provide insights about the underlying biological processes. This approach is in
stark contrast with Polygenic Risk Score (PRS) based approaches, which generate
a cumulative score but fail to provide insights about the implicated pathways. We

investigate the utility of this approach to explore the genetic risk of autism.
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6.1 GUIDE: A Biologically Interpretable Imaging
Genetics Model to Link Genetic Risk Pathways
and Neuroimaging Markers of Disease

This work is based on [64], where we introduce an interpretable Genetics and
mUItimodal Imaging based DEep neural network (GUIDE), for whole-brain and
whole-genome analysis. Our genetics network uses hierarchical graph convolution and
pooling operations to embed subject-level data onto a low-dimensional latent space.
The network is based upon the a priori knowledge of gene ontology [56]. The hierar-
chical network implicitly tracks the convergence of genetic risk across well-established
biological pathways, while an attention mechanism automatically identifies the salient
edges of this network at the subject level. On the imaging front, we use an encoder
coupled with Bayesian feature selection to learn multivariate importance scores. The
latent embeddings learned by our genetics graph convolutions and imaging encoder
are combined for disease prediction. We demonstrate that GUIDE’s ontology network
and imaging-genetics fusion achieve better classification accuracy than state-of-the-art
baselines. More importantly, GUIDE can identify robust and clinically relevant targets
in both data domains.

Fig. 6-1 illustrates our GUIDE framework. Inputs are the gene scores g,, € REX!
for each subject n and the corresponding imaging features 4. € R™*! and 42 € RM>*!
obtained from two different acquisitions. The gene scores g,, are obtained by grouping
the original SNPs according to the nearest gene and aggregating the associated genetic
risk weighted by GWAS effect size [17]. The subject diagnosis (phenotype) vy, € {0,1}

is known during training, but is absent during testing.

6.1.1 Embedding Genetic Information as Node Signals

The top portion of Figure 6-1 illustrates our attention-based graph convolution

model for genetic embedding. The underlying graph is based on the gene ontological

129



1
E\f/ g % [ Biological Process

Graph {t Graph
Convolution \ Convolution Readout A Genes Scores

D“[E<:\‘ il Pl Ao
,f[g‘ k 3 [\ é Iz Inraction betiween

processes
Genetic Graph Embedding (G-EMBED)

Reconstruct Graph Graph Reconstruct

i Root Nodes Unpeoling Unpaohng Gene Scores
E g9
n

Hierarchical Graph Decoding (G-DECODE) G DECODE,

Vo
g a " Bayes Feature Selection
8n —| ceueen |- (7 — | coecove | —> &), S
\ -

uopezyensay [2po

£() ()= 1, —|[of
i717,® :—> E) — En/: DY) 1721 2 lziz
H / \_’ C(-) = ¥n 2 Ll_l

ii ® n _’82() Categorical

50 50 246
5’)E>I H £9(- ::>I H :>H_>I—>H c( )::>I—>I—>@

[|PReLU+Drupuul I BatchNorm -3 FcN @ Haddamard Product

Figure 6-1. Overview of the GUIDE framework. Top: Gene embedding using attention
based hierarchical graph convolution. We also depict the unpooling operation used as a
regularizer. Bottom: Imaging and genetics integration; both modalities are coupled for
disease classification. The variables {i},4>} correspond to the imaging data, and g,, is
the genetic data. £(-), D(:), C(-) are the feature extraction, model regularization, and
classification operations, respectively.

hierarchy [50] that effectively maps each gene to different biological processes.

Gene Ontology: The ontology provides a pre-defined hierarchical network of bi-
ological processes, which has been curated by experts in biology. From a modeling
perspective, the biological processes can be thought of as nodes in a graph. The two

main parts of the ontology in [56, 208] are the assignment of genes to these biological
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processes (i.e., the node embedding) and the directed edges between the biological

processes (i.e., the hierarchical graph).

Node Signal Embedding: After mapping the genes to biological processes, we
create the node signals of the gene ontology graph. Mathematically, this ontology
gives rise to a sparse binary mapping matrix A, € {0, 1}9*F where G is the total
number of genes, and P is the number of biological processes (i.e., nodes). Given this
substrate, GUIDE first learns a projection of the gene scores g,, of the subject n onto

P graph nodes. Each node signal is a d-dimensional feature vector, h,(p) € R
h.(p) = PReLU (g, (W, ® Ay[:,p])), (6.1)

where each of the columns of the learned weight matrix W, € R%*? are masked by
the nonzero entries in the p™ column of A,. We note that this projection step is
similar to a single-layer perceptron with only a subset of input nodes connected to

each hidden node.

6.1.2 Graph Attention and Hierarchical Pooling

In addition to grouping genes into biological processes, a standard ontology also
specifies a hierarchical relationship between the biological processes themselves [209].
An example of this hierarchy is: generation of neurons — neurogenesis — nervous

system development.

We use graph convolution to mimic the flow of information through the hierarchy of
biological processes. Here, GUIDE learns two complementary pieces of information.
The first is a set of graph convolutional filters that act on each embedded node
signal, and the second is a set of subject-specific attention weights that select the

discriminative edges. Formally, let the binary matrix A, € R"*F capture the directed
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edges in the ontology. Our graph convolution at stage [ is:

h(p) =0 ( S EL(pj)hL() W'+ &hé(p)%) : (6.2)

JEChild(p)

where h! (p) € R is signal for node p at stage [, W' € R%*%+1 i5 the convolutional
filter between stages [ and [ + 1, 5, is the self-influence for node t, W, € R4 %+ ig
the convolution filter for self loop, and o(+) is the nonlinearity. The summation in
Eq. (6.2) aggregates the influence over all child nodes defined by the graph A,, thus

respecting the high-level ontology.

The variables E! (p, j) quantify the influence of the child node j over the parent
node p at convolutional stage [. Unlike a standard graph convolutional network, in
which the edge weights are fixed, we learn Eﬁl(p, J) using a graph attention mechanism.

Mathematically, we have
exp (tanh ([hfl(p)Wl h;(j)Wl] . cl>)
>_jeChild(p) €XP (tanh ([hi(p)Wl h;(j)wl] ' CZ))

where ¢! is a fixed weight vector learned during training. We estimate the self influence

E;(p,j) =

(6.3)

variable as 3, = o (hﬁl(p)Ws : cl), where o(-) is sigmoid, and ¢ is another weight

vector learned during training.

Finally, we use hierarchical pooling to coarsen the graph. As formulated in Eq. (6.2),
the graph convolution passes information “upwards” from child nodes to parent nodes.
From the ontology standpoint, each stage of the hierarchy goes from a lower-level
biological process (e.g., neurogenesis) to a higher-level biological process (e.g., nervous
system development). Thus, we remove the lowest (leaf) layer from the graph at
each stage [ and continue this process until we reach the root nodes. The genetic

embedding /9 € RP*! is obtained by concatenating the signals from each root node.

6.1.3 Bayesian Feature Selection

The bottom branch of Fig. 6-1 shows our embedding and feature selection procedure

for the imaging modalities. The feature selection strategy is similar to the strategy
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defined in Section 4.2.1. Our dataset in this work contains two fMRI paradigms,
leading to inputs 4, and 3> of each subject n. However, our framework naturally

extends to an arbitrary number of modalities.

From a Bayesian viewpoint, the problem of feature selection can be handled by
introducing an unobserved binary random vector ¢™ of the same dimensionality as %,
and inferring its posterior probability distribution given the paired training dataset:
D = {%",yn}, where m is the modality and y, denotes the class label. By defining
Im=1["....,&', y=|yi,...,ys), and C™ = [c]", ..., €], we note that the desired
posterior distribution p(¢™|I™,y) is intractable. One strategy is to minimize the KL
divergence between an approximate distribution ¢(-) and the true posterior distribution
KL (q(c™)||p(c™/I™,y)). Mathematically, this optimization can be written as

ar%{})ﬁn — Eq[log (p (Y[I™, C™))] + KL (q(c™)p(c™)) (6.4)
where p(c™) is a prior over the latent masks. While Eq. (6.4) does not have a
closed-form solution, it can be optimized via Monte Carlo integration by sampling the
vectors ¢ ~ Bernoulli(p™), where p™ parameterizes the approximate distribution
q(+), and minimizes the empirical form of Eq. (6.4) [180, 181]. In this case, the first
term becomes the binary cross entropy loss where the input features ¢," are masked

according to c¢]'. In order to learn the probability maps p™ during training, we replace

the binary ¢} with a continuous relaxation of the Bernoulli distribution:

(6.5)

<=0 <10g(pm) —log(1 —p™) + log(uy') —log(1 — UZ?))
n t s

where w" is sampled from Uniform(0, 1), the parameter ¢ controls the relaxation

from the {0, 1} Bernoulli, and the feature selection probabilities p™ are learned during

training (see Section 6.1.1).
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6.1.4 Multimodal Fusion and Model Regularization

As shown in Fig. 6-1, the Bayesian feature selection step is followed by a cascade
of fully connected layers, denoted £™(-), to project each imaging modality m onto
a low-dimensional latent embedding. Likewise, the genetic embedding ¢9 is passed
through a separate fully connected cascade £9(-) and onto the same low-dimensional
space. To leverage synergies between the imaging and genetics data, we fuse the latent

embeddings across modalities to obtain a common representation:

1

L,
M,

(E'( @ ch) +E2(@ @ el) + E9(45)) (6.6)

where ® is the Hadamard product used in the Bayesian feature selection step, £ =
G-EMBED(g,,), where G-EMBED(-) represents the genetics network based on the
ontological hierarchy, and M, is the number of modalities present for subject n.
Finally, the latent embedding ¢, is input to a classification network to tie the learned

biomarkers to patient/control phenotype.

Notice that our fusion strategy encourages the latent embedding ¢,, for an individual
patient to have a consistent scale, even when constructed using a subset of the
modalities. Thus, we can accommodate missing data during training by updating
individual branches of the network based on which modalities are present. In this way,

GUIDE can maximally use and learn from incomplete data.

We introduce three regularizers to stabilize the model. The genetic regularizer
reconstructs the gene scores by performing a hierarchical graph decoding (G-DECODE)
on ¢9. This operation unwraps the gene encoding via the same ontology [50]. Likewise,
the imaging regularizer decodes the original feature vectors from /¢, via the artificial
neural networks D™ (-). Finally, the prior over " appears as the KL divergence

between the learned distribution Ber(p™) and a binary random vector Ber(p,) with
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small entries to enforce sparsity. Our loss function during training is:

L(1,1%2,9) Z Yn 10g(9,,) + (1 — yn) log(1 —7,,))
— .
+ Z KL (Ber(p™)||Ber(py)) + A Y ||, — ||2+AIZ 32 — D*(€,)] 3
m=1 n=1
Ny
+X¢ Y. |l9,, — G-DECODE(#)|]3 (6.7)
n=1

where 7 is the class prediction, N is the total number of subjects, N,, is the number
of subjects with modality m present, and the hyper-parameters {\;, A\g} control the
contributions of the data reconstruction errors. The function KL (:||-) in Eq. (6.7)
averages the element-wise KL divergences across the input feature dimension, thus

maintaining the scale of the prior term regardless of dimensionality.

The first two terms of Eq. (6.7) correspond to the classification task and the
feature sparsity penalty, which are empirical translations of Eq. (6.4). The final three
terms are the reconstruction losses, which act as regularizers to ensure that the latent

embedding captures the original data distribution.

Training Strategy: As described in Section 6.1.7, our dataset consists of 1848
subjects with only genetics data and an additional 208 subjects with both imaging
and genetics data. Given the high genetics dimensionality, we pretrain the G-EMBED
and G-DECODE branches and classifier of GUIDE using the 1848 genetics-only
subjects. These 1848 subjects are divided into a training and validation set, the latter
of which is used for early stopping. We use the pretrained model to warm start GUIDE

framework and perform 10-fold nested CV over the 208 imaging-genetics cohort.

We learn the Bayesian feature selection probabilities during training by sampling
the random vectors ¢}, ¢2 during each forward pass using Eq. (6.5) and using them to
mask the inputs i;, zi for patient n. Finally, if a data modality is missing for subject n,
we simply fix the corresponding encoder-decoder branch and update the remaining

branches and predictor network using backpropagation.
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Implementation Details: We use the first five layers of the gene ontology [56] to
construct G-ENCODE. In total, this network encompasses 13595 biological processes
organized from 2836 leaf nodes to 3276 root nodes. We perform a grid search over
three order of magnitude and fix the hyperparameters A\; = 3 x 1073, \¢ = 107°. We
fix the signal dimensionality at d = 2 for the gene embedding and d; = 5 for the
subsequent graph convolution and deconvolution operations based on the genetics-only
subjects. Likewise, the non-linearity in Eq. (6.2) selected to be a Layer Norm, followed
by PReLU and Dropout, once again using the genetics-only subjects. The Bernoulli
prior over p™ is set at py = 0.001, which is consistent with [62]. We train GUIDE
using ADAM with an initial learning rate of 0.0002 and decay of 0.7 every 50 epochs.
Our code is implemented using Matlab 2019b and PyTorch 3.7. Training the full
model takes roughly 17hrs on a 4.9GB Nvidia K80 GPU.

6.1.5 Baseline Comparison Methods

We compare GUIDE with three conventional imaging-genetics methods and single
modality versions of our framework. In each case, the hyperparameters are optimized

using a grid search.

Parallel ICA + RF: We concatenate the imaging modalities to single vector

1T 2T

i, = [¢, ¢, |7 and perform parallel ICA (p-ICA) [115] with the gene scores g,,.
Since p-ICA cannot handle missing modalities, we fit a multivariate regression model
to impute a missing imaging modality from the available ones. Specifically, if 27
is absent, we impute it as: 4] = B1,, where 3 is the regression coefficient matrix

obtained from training data. After imputation, we use p-ICA to decompose the

imaging and genetics data into independent but interrelated networks:

t,=Se, and g,=W f,
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where S, W are independent source matrices and the e, f, are loading vectors. We

T

n} and use it as the input feature vector for a

concatenate the loading matrices [eg,

random forest classifier.

During training, we apply p-ICA to just the training data to estimate the sources
{Strains Wirain}- We use these estimated sources to obtain the loading matrices for

the test data as follows:

Ltest = Straine and Giest — Wtrainf

The loading scores obtained from p-ICA are fed to a random forest model for
classification. Our hyperparameter tuning optimizes the number and depth of
the decision trees. We control the tree depth by setting the minimum number

of observations per leaf node. After the grid search, these parameters are set to

{No. trees = 10000, MinleafSize = 50}.

G-MIND: The G-MIND architecture by Ghosal et al. [62] is designed for a 1242
genetics input. Thus, we introduce a fully-connected layer to project the high-
dimensional gene scores g,, onto a 1242 dimensional vector for input to G-MIND [62].
We evaluate both random weight initialization and pretraining the genetics branch of

G-MIND with the 1848 genetics-only subjects.

Ghosal et al. [62] selected the hyperparameters as powers of 10 such that the
rescaled terms in the loss function lie within the same order of magnitude [1-10].
This criterion is intuitive (i.e., equal importance is given to both the imaging and
genetic data), and it is not performance driven. We use a similar strategy and
fix the hyperparameters of genetic reconstruction loss, imaging reconstruction loss,

classification loss, and sparsity loss to 0.0001, 0.1, 1,0.001, respectively.

G-MIND (Sub-selection): The G-MIND architecture relies on a subselection of

SNPs based on the p-values reported in a prior GWAS analysis of schizophrenia [17].
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Here, we subselect the same set of SNPs and feed them to the G-MIND model. This
baseline captures the performance change when the ontology-based representation is

replaced with the GWAS sub-selection. We use the hyperparameters reported in [62].

Single Modality Prediction: We consider two versions of GUIDE. The first
consists of the genetics branches and classifier, and the second consists of just the
imaging branches and classifier. We optimize these networks architectures using
repeated 10-fold cross validation outlined in Section 6.1.4. These baselines probe the
advantages of integrating imaging and genetics data modalities in a single framework.

The hyperparameters for single modality prediction are the same as the full model.

GUIDE (Random Dropout): The feature selection layer of our original GUIDE
framework both regularizes the model and identifies potential imaging biomarkers. In

this baseline, we replace the Bayesian feature selection layer with random dropout.

Hierarchical GCN: GUIDE utilizes an ontology to flow the information through
the graph. The gene ontology network is curated based on a priori information. In this
baseline, we replace the ontology based graph with a random graph. The construction
of this graph is explained in Section 6.1.6.2. This baseline captures the performance

gain for embedding biological knowledge into our architecture.

GCN + MaxPooling: We compare our model with a standard GCN introduced by
Kipf & Welling [131]. In this baseline, we generate a weighted adjacency matrix (A €
R'908X13908) 15ing absolute correlation values between the gene scores from the
pretraining data (i.e., 1848 genetic only subjects). This adjacency matrix acts as an
undirected graph between the nodes. Unlike GUIDE, the nodes represent each gene

score instead of a biological process. We also perform hierarchical pooling with a max

pooling operation [210] to reduce the data dimension between the graph convolution
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layers. This is in stark contrast to GUIDE where we use biological knowledge to
consolidate the information flow through the network. Here, we note that the adjacency
matrix A is not sparse, resulting in a significantly higher computational overhead

than GUIDE.

In this baseline, we use two graph convolutional layers, each followed by a max-
pooling layer. The max-pooling layer reduces the number of nodes by approx 50%
such that after the final layer, the reduced data is of the same dimension as /¢, in
GUIDE. This architecture balances the computational requirements and the data
representation ability of the model. Finally, we fix the readout layers, the imaging

modules, and the classification module to the same architecture of GUIDE.

6.1.6 Evaluation Strategy

We conduct a comprehensive evaluation of our framework that includes influence of
embedding a priori biological information, biomarker reproducibility, and classification

performance.
6.1.6.1 Ablation Study

In this section, we evaluate the gain from three novel components of GUIDE: graph
attention, feature selection, and the decoder for regularization. Specifically, the graph
attention encourages GUIDE to focus on the discriminative interaction patterns in the
genetic data, the Bayesian feature selection identifies the most predictive brain regions
and the decoders ensure that the low-dimensional embedding faithfully captures the

original data distribution.
6.1.6.2 Influence of the Ontology-Based Hierarchy

In GUIDE, we assume that processing the data according to an established gene ontol-

ogy will extract more robust and discriminative biomarkers. To test this assumption,
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we compare our gene ontology network to random networks and to an unstructured
model. The random networks contain the same number of nodes in each layer as the
ontology-based graph. However, we randomly permute edges between the parents
and children nodes, and between the genetic inputs g,, and nodes. The corresponding
unstructured model is a fully-connected ANN with the same number of parameters,
but no inherent structure between layers. As a benchmark, we compare the deep
learning models with the gold-standard Polygenetic Risk Score (PRS) for schizophrenia
developed by the PGC consortium [17]. Broadly, the PRS is a weighted combination
of the risk alleles for schizophrenia, as determined by a large GWAS study. We run a

logistic regression on the (scalar) PRS to determine class membership.
6.1.6.3 Classification Performance

We use repeated 10-fold cross validation (CV) on the 208 imaging-genetics subjects to
quantify the performance. The models are trained using 8 folds, and the remaining
two folds are reserved for validation and testing. We report accuracy, sensitivity,
specificity, Area Under the ROC Curve (AUROC), and Area Under the precision-recall
Curve (AUPRC). The operating point is chosen by minimizing the classification error

on the validation set. We further use Del.ong tests to compare statistical difference in

AUROC between GUIDE and the baselines.
6.1.6.4 Reproducibility of Feature Importance Maps

The probability maps p,, capture the importance of each feature of modality m. We
evaluate both the predictive performance and the reproducibility of our Bayesian
feature selection (BFS) scheme. We extract the the top-K features of p,, learned
during each training fold of our repeated 10-fold CV setup and encode this information
as a binary indicator vector, where the entry ‘1’ indicates that the feature is among

the top-K. We compare the BFS features with Kernel SHAP [130]. The background
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values for K-SHAP are fixed to the average input data across the training set. We use
the validation set to select the top K K-SHAP features and encode them in an binary

indicator vector.

To quantify predictive performance, we mask our test data from each fold using
the BFS and K-SHAP indicator vectors and send it through GUIDE for patient
versus control classification. To quantify the reproducibility of the top-K features, we
calculate the pairwise cosine similarity between all the binary vectors across the folds
as identified by either BFS or K-SHAP. The distribution of similarities tells us how

often the same imaging features are selected across subsets of the data.
6.1.6.5 Discovering of Biological Pathways

The attention layer of G-ENCODE provides a subject-specific measure of “information
flow” through the network. We first trace all possible paths between leaf and root
nodes to identify discriminative paths in the network. The importance of edges along
these paths are used in a logistic regression framework to predict the subject class
label. We then perform a likelihood ratio test and obtain a p-value (FDR corrected)
for each path in terms of patient/control differentiation. For robustness, we repeat
this experiment 10 times using subsets of 90% of our total dataset 1848 + 208 subjects

and select paths that achieve p < 0.05 in at least 7 of the 10 subsets.

6.1.7 Results

6.1.7.1 Data and Preprocessing

We evaluate GUIDE on a study of schizophrenia provided by Lieber Institute for Brain

Development (LIBD) Institution that contains SNP data and two fMRI paradigms.

[lumina Bead Chipset including 510K/ 610K /660K /2.5M is used for genotyping.
Quality control and imputation were performed using PLINK and IMPUTE2. The

resulting 102K linkage disequilibrium independent (r? < 0.1) indexed SNPs are
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Figure 6-2. ROCs for the PRS (blue), unstructured ANN (green) and the structured
models where G-EMBED and G-DECODE use either random graphs (red) or the gene
ontology network (magenta). The AUROC is given in parentheses.

grouped to the nearest gene (within 50kb basepairs) [211]. The 13,908 dimensional
input genes cores are computed as the weighted average of the SNPs using GWAS
effect size [17]. We note that the GWAS was performed on a separate dataset that

did not include our site.

Imaging data include two task-fMRI paradigms. The first paradigm is a working
memory task (N-back), and the second is a simple declarative memory task (SDMT).
The data modalities are explained in Section 2.4.1. After preprocessing we use
Brainnetome atlas [143] to define extract brain activation maps from 246 cortical and
subcortical regions. The inputs ii“ zi correspond to the average contrast over voxels

in the respective region. Additional details are reported in Section 2.4.1.

Our imaging dataset is incomplete, as many subjects were only scanned using one
of the two fMRI paradigms. Table G-I reports the breakdown of patients and controls
for each configuration. Finally, Table 6-1 reports the demographic information for the
cohort. In each case, the patient and control groups were matched on age, IQQ (WRAT

score), and years of education.

In total, our dataset contains 1848 subjects (792 schizophrenia, 1056 control) with
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LIBD
Demographic
N-back SDMT
Data Sets

Sex (I\I/F> 113/47 70/40 SNP-Only N-back + SNP SDMT + SNP All Modalities

AgC (ycars) 31+10 31£10 Cases Controls Cases Controls Cases Controls Cases Controls
Education (years) 15+2 1242 8 1056 2 5 " 3 o #

1Q 105 £+ 10 104 + 10

Table 6-1. Demographic informa- Table 6-11. Breakdown by patients and controls for
tion for subjects provided by LIBD each configuration.
Institution.

just SNP data and 208 subjects with imaging and SNP data, divided as follows: 98
subjects (42 schizophrenia, 56 control) with SNP and N-back data, 48 subjects (17
schizophrenia, 31 control) with SNP and SDMT data, and 62 subjects (38 schizophrenia,

24 control) who have all the three data modalities.
6.1.7.2 Benefit of the Gene Ontology Network:

To quantify the value of embedding a biological hierarchy into our model architecture,
we first train just the genetics branch and classifier for all three deep networks (un-
structured, random graphs, ontology) using the 1848 genetics-only subjects and test
them on the SNP data from the other 208 subjects. We sample 10 random graphs in

this experiment.

Figure 6-2 illustrates the ROC curve over the test data. As seen, the testing
performance is near-chance using both random graphs and the ANN. The gold-
standard PRS does slightly better; however, this measure was derived from a much
larger consortium dataset. In contrast, our gene ontology network (magenta line
in Figure 6-2) achieves the best performance of any method, suggesting that our
biologically inspired architecture can extract robust and predictive features from the

genetic data.
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Figure 6-3. The reproducibility of imaging biomarkers when the input layer of GUIDE is
trained without dropout, with random dropout, and with Bayesian feature selection.

6.1.7.3 Classification Performance:

Table 6-111 reports the 10-fold CV testing performance of all the methods on the
multimodal imaging-genetics dataset; we repeat the CV procedure 10 times to obtain
standard deviations for each metric. We note that P-ICA and G-MIND with random
initialization have relatively poor performance, likely due to the high dimensionality

of g,, and low sample size. Pretraining on a separate genetics dataset improves the
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Table 6-111. Classification performance (mean =+ std) across repeated CV runs. P-values
obtained from Delong test indicate significantly greater AUROC for GUIDE than each of
the baselines.

Method Perf Sensitivity Specificity Accuracy AUPRC AUROC P-Value
P-ICA 0.30+£0.10 0.80+0.07 0.56+£0.03 0.54+£0.04 0.59+0.04 <10
G-MIND (random) 0.62 £ 0.06 0.65 %+ 0.05 0.634+0.02  0.624+0.03  0.67+0.03 <1074
G-MIND (pretrain) 0.60 £0.07 0.66+0.07  0.63+£0.03 0.62£0.03  0.68+0.02 <107
G-MIND (Sub-selection) 0.63£0.08 0.67+0.06 0.65+0.01 0.63+0.04 0.70=+0.02 <10

Hierarchical GCN 0.48 £0.17 0.75+£0.13  0.62+£0.02 0654002 0.71+£0.02 1.8x107*

GCN+MaxPooling 0.434+0.19 0.76£0.14  0.61+£0.03 0.64+002 0.69+£0.02 < x107*
Imaging Only 0.44 £0.18 0.76+0.14  0.61£0.01 0.62£0.02 0.66 £0.02 <107
Genetic Only 0.54 £0.15 0.69+0.10 0.62£0.02 0.63£0.03 0.68=40.02 <107

GUIDE (R‘(Hld()IIl Dr()p()ut) 0.51 +£0.14 0.79 +£0.12 0.66 +£0.02 0.70 & 0.02 0.75 + 0.01 0.27

GUIDE 0.62 £0.04 0.76 £0.04 0.69+0.01 0.70+0.03 0.75+ 0.01

AUC of G-MIND, highlighting the benefits of increased data. Among all the versions
of G-MIND, the subselection of SNPs gives the best performance. We also compare
GUIDE with two graph convolution-based models. In the first model, we see that
replacing the structured representation of the nodes with a random hierarchical graph
reduces performance. Hence, the ontological representation is extracting meaningful
information from the data. The second model compares GUIDE with a standard GCN
and max-pooling. This GCN uses a dense graph for convolution and relies on a data-
driven strategy for dimensionality reduction. Again, we observe poor performance,
in this case likely due to the large model size. In comparison, GUIDE operates on a
sparse graph and relies on biological knowledge for dimensionality reduction. Finally,
we replace the GUIDE BFS layer with random dropout. While the quantitative
performance is similar, the feature reproducibility is much higher with BFS (see
Fig. 6-3). This result underscores the dual value of BFS for predictive performance

and biomarker discovery.
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Table 6-1V. Classification performance (mean =+ std) across repeated CV runs. P-values
obtained from Delong test indicate significantly greater AUROC for GUIDE than each of
the ablated models.

Method Perf Sensitivity Specificity Accuracy AUPRC AUROC P-Value
No Attention 0.49+£0.09 0.794+0.08 0.65+0.03 0.70+£0.02 0.73+0.02 0.01

No Feature Selection 0.56 +0.13 0.73£0.10 0.65+£0.03 0.67+0.03 0.74+0.03 0.28
No Decoder 0.58 +0.18 0.66+0.17  0.62+0.02 0.654+0.02 0.7040.01 <107

No Attention, No Feature Selection 0.56 £0.18 0.72+£0.13 0.64 +£0.02 0.67£0.03 0.73+£0.03 0.05

No Attention, No Decoder 0.50 +£0.16 0.76 £0.12 0.64+£0.03 0.66£0.02 0.71£0.02 <107*

No Feature Selection, No Decoder 0.61£0.10 0.69 £0.10 0.65+£0.03 0.63£0.03 0.72£0.03 0.01

No Attention, No Feature Selection,

No Decoder

0.57 £0.20 0.68£0.17 0.634+0.03 0.61+0.03 071+£0.02 4x10*

GUIDE 0.62+0.04 0.76+0.04 0.69+0.01 0.70+0.03 0.75%+ 0.01

6.1.7.4 Performance in Ablation Study

Table 6-1V compares the performance of the ablated models with GUIDE. This
ablation study allows us to quantify both the improvement of each component when
they are incorporated in the model and the degradation in performance when one
component is ablated from the full model. For example, removing the decoders causes
the classification performance to degrade, regardless of the other components (i.e.,
GUIDE is better than “No Decoder” and “No Attention, No Feature Selection” is
better than “No Attention, No Feature Selection, No Decoder”). We observe similar
trends for both graph attention and Bayesian feature selection components. Thus, our
ablation study demonstrates that all three components of GUIDE are essential for

phenotypic prediction.
6.1.7.5 Reproducibility of BFS Features:

Fig. 6-4 illustrates the classification AUC when the input features are masked according
to the top-K importance scores learned by the BFS (solid blue) and K-SHAP (dashed
red) procedures. The confidence intervals are obtained across the repeated CV folds.

As seen, both feature selection schemes achieve similar AUCs as the number of features
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Figure 6-4. Mean AUC and confidence interval when masking the top- K imaging features
learned by BFS (solid blue) and K-SHAP (dashed red). K is varied along the x-axis.
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Figure 6-5. The reproducibility of imaging biomarkers when the feature selection has
been done using K-SHAP vs Bayesian dropout. Left shows the performance on Nback
data, Right shows the performance on SDMT data

K is varied across its entire range, thus highlighting the robustness of our (simpler)

BFS approach.

Fig. 6-5 reports the distribution of cosine similarities between the masked feature
vectors learned by BFS and K-SHAP for K = 10, 20, 50, 100, 150. The repeated CV
procedure is run 10 times, yielding 100 total folds and 4950 pairwise comparisons per
method. Notice that our BFS procedure achieves significantly higher cosine similarity
values at each setting for K, which suggests that it selects a more robust set of features

that is consistent across subsets of our main cohort.
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Figure 6-6. Left: The consistent set of brain regions captured by the dropout probabilities
{b',b?} for K = 50. The color bar denotes the selection frequency. Right: Brain states
associated with the selected regions for each fMRI task, as decoded by Neurosynth.

6.1.7.6 Imaging Biomarkers

Fig. 6-6 illustrates the consistent imaging features that are selected by our method
across the folds for K = 50. We have colored each brain region according to the
selection frequency. For clarity, we have displayed only the top 40% regions. We observe
that the N-back biomarkers involve the Middle Frontal Gyrus (MFG), Inferior Frontal
Gyrus (IFG), and default mode network which are associated with schizophrenia [4,
212]. The SDMT biomarkers implicate the Supramarginal Gyrus (SMG), Superior
Frontal Gyrus (SFG), along with Precuneus and Cuneus. We further interpret
the higher order brain states implicated by these regions using Neurosynth [213].
Neurosynth uses a reverse-inference procedure to select a set of “cognitive terms”
associated with a set of input coordinates based on how frequently similar patterns
have been observed across the fMRI literature. Fig. 6-6 shows that the N-back and

SDMT biomarkers are associated with memory retrieval and attention [214, 215], thus

verifying that GUIDE captures information relevant to the fMRI tasks.
6.1.7.7 Genetic Pathways

GUIDE contains 14881 “biological paths” between the leaf and root nodes. Using

the likelihood ratio test outlined in Section 6.1.6.5, we are able to identify 152 paths
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with p < 0.05 after FDR correction that appear in at least 7 of the 10 random
training datasets. We cluster the biological processes present along these paths into
10 categories based on their semantic similarity. This clustering strategy provides
intuition about the higher-level biological functions identified by this model. Here, we
use the tf-idf [216] information retrieval scheme to extract keywords in the pathways;
we then embed them in a two-dimensional space using t-SNE [217] and apply a
k-means clustering algorithm. Fig. 6-7 shows the clusters along with the most frequent
keywords within each cluster. As seen, the frequent biological processes involve calcium
signaling, regulation of macrophage and immunological synapse formation which have
been previously linked to schizophrenia [184, 218, 219]. This exploratory experiment
shows that GUIDE can be used to extract discriminative biological information

about neuropsychiatric disorders.

6.1.8 Discussion

We introduce a biologically regularized approach to encode millions of genetic variants
in a non-linear framework while maintaining interpretability. The first key contribution

of GUIDE is a pre-defined network of biological processes to strategically combine
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genetic information. The nodes and edges of the graph have a biological meaning.
As a result, the edge properties and the node features provide us insights into the
information flow through the network. This kind of transparent model has the

capability to pinpoint biological mechanisms in a data-driven fashion.

The second contribution is using graph attention to quantify the effect of each node
on its parent node. This strategy allows us to identify discriminative edges associated
with schizophrenia. This results in the identification of implicated biological pathways

that could potentially identify novel therapeutic targets.

The third contribution is the hierarchical convolution combined with hierarchical
pooling. In standard polygenic risk score-based models, all the SNP information is
combined as a weighted sum. As a result, they lack interpretability. In comparison,
GUIDE combines the SNP information in a hierarchical fashion informed by SNP-
gene, gene-pathway mapping. In addition, the graph attention controls the relative
contributions of each component. This provides a fully automatic and interpretable

strategy to combine genetic information and create an interpretable genetic risk score.

Finally, GUIDE provides an end-to-end approach to combine multimodal imaging
and genetic data in a single framework. The biologically regularized model restricts
the parameter space, leading to model stability and improved prediction. In sum-
mary, GUIDE provides a comprehensive framework that can combine multiple data

modalities, handle missing data, and parse high-dimensional imaging and genetic data.

6.1.9 Summary

We propose a novel biologically interpretable graph convolutional network that inte-
grates imaging and genetics data to perform disease prediction. This model is able
to leverage prior biological information of different connected biological processes to
identify patterns from both imaging and genetic data sets. Additionally, the unique

use of Bayesian feature selection is able to find a set of clinically relevant features.
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The improved classification performance shows the ability of this model to build a
comprehensive view about the disorder based on the incomplete information obtained
from different modalities. We note that, our framework can easily be applied to other
imaging modalities, such as structural and diffusion MRI, simply by adding encoder-
decoder branches. In the future, we will apply our framework to other application

domains, such as autism and Parkinson’s disease.

6.2 GUIDE-PRS:A Biologically Interpretable and
Non-linear Approach to Generate Polygenic
Risk Scores

In this section, we explore the use of our GUIDE model (shown in Section 6.1) to
create non-linear and interpretable polygenic risk scores. Traditional polygenic risk
scores combine all the SNP data using a weighted sum. While this approach is
easy to interpret and provides the genetic liability of a disorder, it fails to provide
insights into the underlying processes. The genetic mutations in the DNA affect genes
differently [18, 220, 221]. As a result, the genetic risk could be divided non-uniformly
across different biological processes. Prior works [28, 101, 222] have tried to address this
issue by incorporating information on biological pathways or gene regulatory networks.
However, these approaches rely heavily on prior expertise and handcrafted features. In
comparison to these traditional approaches, our genetic encoding strategy (shown in
Section 6.1) can automatically combine information using hierarchy of gene ontology
and create pathway-specific gene scores. In addition, the graph attention network
guides the distribution of genetic risk across different pathways, creating non-linear

genetic risk scores.

This section will show our ongoing work on creating interpretable and non-linear
genetic risk scores for autism spectrum disorder. The model used in this section is

heavily motivated by our genetic encoding strategy shown in Section 6.1. We deviated
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Figure 6-8. The hierarchical encoding strategy to create pathways-specific polygenic
risk scores. The SNP data G,, € RM*! from subject n is encoded to create gene scores
g, € R The hierarchical ontology based encoder E(-) uses graph convolution and
graph attention to encode the gene scores and create pathway specific polygenic scores.
The polygenic scores £,, € R™*! is generated for R root nodes. D(-) is the hierarchical
unpooling operation along the ontology. W is a linear operation to predict class labels
from the plygenic scores.

from our previous approach primarily in three places: we provide an additional gene-to-
node embedding strategy that restricts the parameter space, we replace the soft-max
operation with sigmoid to capture node-node interaction, and finally, we replace the

classifier ANN with a linear layer for interpretability.

6.2.1 Hierarchical Encoding of Genetic Data

Fig. 6-8 shows the overall strategy to create the genetic risk scores using hierarchical
encoding of the genetic data along a Gene Ontology (GO) [223]. The encoder and the

decoder follow a similar strategy described Section 6.1.
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Generating Gene Scores: This first level of encoding creates the genetic risk

scores from the SNP data. Mathematically, the gene scores are created as:

gn(i) = > w;iGln,Jj] (6.8)

jENe(7)
where g,,(7) is the i-th gene scores for subject n, Ne(7) is the collection of SNPs in
the neighborhood (within ~ 500K basepairs) of the i-th gene, G is the SNP data

matrix, and w; is the SNP-effect obtained from a separate GWAS study. This encoding

strategy creates gene-based liability scores of the underlying disorder.

Gene To Node Mapping: This work explores two types of node signal embedding
strategies. The first strategy follows the same approach given in Section 6.1.1. We
learn a projection of the gene scores g,, of the subject n onto P graph nodes. Each

node signal is a d-dimensional feature vector, h,(p) € R'*%
hu(p) = PReLU(g, (W, ® A, [1,p])), (6.9)

where each of the columns of the learned weight matrix W, € R%*? are masked by
the nonzero entries in the p' column of A,. However, note that the embedding weight

W, is unique for each node, resulting in a large unconstrained parameter space.

To address this issue, we introduce a second embedding strategy where the em-
bedding weights are shared across all the nodes. This strategy follows the following

structure:
ha(p) = PReLU (g} (W ® A, [,p]) ® o), (6.10)

where W is the embedding weight shared across all the nodes. However, to maintain
the unique identities of each node, we perform elementwise multiplication of the

embeddings with node-specific weight vectors a,, € R,

Propagation Along Ontological Hierarchy: Gene ontology (GO) [56] provides a

hierarchical representation to combine genetic information strategically. Traditionally,
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the genes are mapped to multiple low-level biological processes based on their involve-
ment in the specific process. The low-level processes are combined to create high-level
biological processes. This hierarchical approach provides us with a framework to
distribute genetic risk along different biological processes and create an interpretable

genetic risk score.

We use the same graph convolution approach (described in Section 6.1.2) to
combine the genetic risk along the biological processes. Formally, let the binary matrix
A, € R"*F capture the directed edges in the ontology. Our graph convolution at
stage [ is:

h(p) =0 ( S EL(pj)hL()) W'+ &hé(p)ws) : (6.11)

JEChld(p)

where hib (p) € R4 is signal for node p at stage [, W' € R“*%+1 ig the convolutional
filter between stages [ and [ + 1, 3, is the self-influence for node t, W, € R%*%+1 g
the convolution filter for self loop, and o(-) is the nonlinearity. Here, note that each
node signals hln (p) represents a genetic score generated by aggregating the influence

over all child nodes defined by the graph A,,.

Previously, the contribution of a child node to its parent node E' (p, j) was captured
using a soft-max operation. However, one drawback of soft-max is that if a child
node’s contribution is small it automatically drives up the contribution of other child
nodes. Soft-max fails to capture the absolute importance of a node over its parent
nodes. So, in this work, we deviate from soft-max operations and use sigmoid to

capture the interactions. Mathematically, we have
E,(p,j) = ([h, (W' hLG)W'] ) (6.12)

where o(+) is the sigmoid function. Finally, we use hierarchical pooling to coarsen
the graph. As formulated in Eq. (6.11), the graph convolution passes information

“upwards” from child nodes to parent nodes. From the ontology standpoint, each stage
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of the hierarchy goes from a lower-level biological process (e.g., neurogenesis) to a
higher-level biological process (e.g., nervous system development). The final encoded
vector, £, € R, captures a non-linear representation of genetic risk generated by

the root nodes.

In addition to the encoder, we have a decoder branch that reconstructs the
gene scores from the encoded latent representation. The decoder branch uses graph
unpooling along the same ontological hierarchy. This operation regularizes the model
and ensures that the encoded representation contains informative information about

the input data.

Subject Classification: The genetic risk scores £,, generated by the root nodes are
passed through a linear layer, followed by a sigmoid operation to predict the class
labels. The classification module ensures that the genetic risk scores are informative

and contains discriminative information about the disorder.

Loss Funtion: We train the graph neural network by minimizing a loss function,
which is a combination of reconstruction loss and classification loss. Mathematically,

the loss can be written as follows:

L=Cly.5:W)+A> g, —D(E(guin);0) Iz (6.13)

where C(+, ) is the binary cross entropy loss between the original class labels y and the
predicted labels g, £(+) is the encoding operation and D(-) is the decoding operation
parametrized by m and ¢, respectively. The parameters, W ¢ and n are learned

during training using backpropagation.

Implementation Details: We train the model on SSC data that contains 4217
subjects with probands and pseudo-controls and evaluate the performance on ACE

data containing 236 subjects with probands and controls. We use 20% of the SSC data
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as validation data for early stopping. We perform a grid search to fix the configuration
of the model. We sweep over multiple depths of the ontology network L = [3,5,7],
two different ontologies (Cellular Components (CC), Biological Processes (BP)), two
different node embedding strategies, and node feature dimensions d; = [2,5]. The SSC
data lacks “true” controls, so we finalize the model using bootstrapping on the ACE
data. We perform 50 bootstrapping trials and use 10% of ACE data as validation to
pick the model. The rest 90% of ACE data is used to report the performance of our
model across the validation experiments. We train the models with a learning rate of
0.005 using ADAM [186] optimizer. We also want to emphasize that all the models
are trained on SSC, and their parameters were fixed during evaluation, so there’s no

data leakage.

6.2.2 Evaluation Strategies

Classification Performance: We compare the classification performance of our
model with a traditional polygenic risk score-based approach. We use the same genetic
variants that are used in our model to create the polygenic risk scores. Following the

strategy explained in [98] we create the polygenic risk scores as:
rn =Y 1(P(w;) < ths)(G[n,i]w;) (6.14)

where 7, is the PRS, 1(-) is the indicator function that decides whether to include a
variant ¢ based on a p-value threshold, P(w;) is the p-value of w;, w; is the estimated
effect size obtained from a GWAS, and G is the genotype matrix. We use the
polygenic risk score and the 10 principal components obtained from the genotype data
as regressors in the logistic regression framework. The p-value threshold was chosen

based on the validation performance.

Both the models are trained on the SSC data and evaluated on ACE data. The
final classification performance is reported in the form of Area Under ROC (AUROC)

and Area Under Precision Recall (AUPRC) curve.
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Evaluation of Genetic Risk Scores: In this experiment, we evaluate the impor-
tance of the non-linear genetic risk scores captured by the node features of the root
nodes. After encoding, the genetic risk scores across R root nodes are represented by
the vector £, € R, Every element in £, (i) represents a pathway-specific risk score
that is generated by combining the genetic risk distributed across the hierarchy of
the children nodes of that specific root node. We evaluate the risk scores by perform-
ing a two-sample t-test between the probands and the controls. Finally, we report
the average — log(pvalue) across the 50 bootstrap trials for each of the risk scores.
This analysis will identify the pathway-specific risk scores that contains informative

information about the disorder.

Evaluation of Edge Interactions: The edge interactions in our model are captured
by the graph attention matrix E. Each matrix element E![i, j] captures the interac-
tions between the child node j, and the parent node ¢ at layer [. In our multi-layer
GCN, each layer has a unique interaction between the child node j, and the parent
node 7. In this analysis, we select the last interactions between ¢ and j before node j
gets pruned by graph pooling. The hypothesis is that the last instance of node j before
pruning contains all the information from its child nodes; hence, its interaction with
the parent node 7 is most informative. After selecting the interactions, we create an
interaction matrix F, for individual subjects. Similar to the strategy described in Sec-
tion 6.1.6.5 we identify all the paths between root and leaf nodes. We concatenate the
edge interaction values as features and pass it through a Likelihood Ratio Test (LRT)
to identify paths that shows discriminative interactions between probands and controls.
This analysis gives a fine-grained understanding of the interaction between biological
processes associated with the disorder. We identify the paths that have pvalue < 0.05
after FDR correction. We report the frequency of a node across 50 bootstrap trials

that is present along paths with significant p-values.
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6.2.3 Preliminary Data Analysis

6.2.3.1 Data and Preprocessing

In this analysis, we acquire two genetic datasets from the Simons Simplex Collec-
tion (SSC) and the Autism Center of Excellence (ACE). The preliminary data analysis

and acquisition are described in Section 2.4.2.

SSC Data: After initial preprocessing, we obtain ~ 2591 simplex family data. Each
simplex family contains a proband, an unaffected sibling, and both parents. This
family-based data lacks control subjects. Following the strategy defined in [16, 224]
we create pseudo-controls from this family data. Finally, we subselect the subjects
that belong to the European population for our analysis. The final SSC data contain

4217 subjects (2109 probands and 2108 pseudo-controls.)

ACE Data The ACE data contains 346 subjects among which 236 subjects belong

to the European population. We use these subjects to evaluate the models.

Genetic Preprocessing We preprocess the proband-pseudocontrol data from SSC
and proband-control data from ACE following the pipeline defined in RICOPILI [147].
After preprocessing, we impute the data using SANGER which uses Haplotype
Reference Consortium (release 1.1) as the reference data. We use the overlapping SNPs
from ACE and SSC for our analyses. After imputation, we clumped (r2 < 0.5, 500K)
the data to identify ~ 400K LD independent index SNP. The LD clumping removes
redundancy from the highly correlated genetic variants. The final ~ 400K index SNPs
are assigned to ~ 17000 genes to create the gene scores. We use PANTHER [142]
to map the genes to the nodes of gene ontology. In our experiments, we explore two
different ontologies. The first one involves Cellular Components (CC) which provides

knowledge about the cellular structures in which a gene product performs a function.

158



Perf
Mothod AUROC AUPRC

PRS 0.64 £ 0.0l | 0.64+0.02
GUIDE-PRS (CC) | 0.68 &£ 0.01 | 0.65 +0.01
GUIDE-PRS (BP) 0.66 = 0.005 | 0.66 £ 0.01

Table 6-V. The classification performance of the models across 50 bootstrap trials on ACE
data. The AUROC and AUPRC capture the area under the ROC curve and the area under
the precision-recall curve, respectively. GUIDE-PRS (BP) and GUIDE-PRS (CC) are two
variants of our model where one is trained using the ontology of Biological Processes (BP)
and the other is trained using the ontology of Cellular Components (CC).

The second one involves Biological Processes (BP), which provides knowledge about
the genes’ involvement in ‘biological programs’ accomplished by multiple molecular

activities.

In order to create the polygenic risk scores, we use SPARK [225] and iPSYCH [16]
data to obtain the GWAS summary data. We ensure that there is no subject overlap
between the GWAS data and our data. During training, we also perform a GWAS
on the SSC training data and combine all the three GWAS summary statistics using
METAL [226]. The combined statistics are used to create the gene scores of our model

and the polygenic risk scores for the baselines.
6.2.3.2 Results

Classification Performance: Table 6-V shows the classification performance of the
models. We again note that all the models are trained on the SSC data and directly
evaluated on the ACE data for classification performance. In addition, the model
parameters are fixed based on the performance on 10% of ACE data, and the results
are reported on the rest of the ACE data across 50 bootstrap trials. Here, we see a
clear improvement in classification performance in our approach. This result shows
that the ontology-driven hierarchy can combine genetic risk and provide competitive

performance in the classification of autism.
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Description GO Term | -log,,(pval)
FDR
25
Phenylalanine-tRNA ligase
complex G0:0009328 4.02
Scrib-APC-beta-catenin
complex G0:0034750 4.02
~
8 Podocyte foot G0:0098846 4.04
hvd Amyloid-beta complex G0:0106003 4.05
€ PCSK9-LDLR complex G0:1990666 4.05
g CRD-mediated mRNA stability
complex G0:0070937 4.03
BRCA2-MAGE-D1 complex G0:0033593 4.02
Cellularization cleavage
2 3 4 5 6 furrow G0:0110070 4.02
Reelin complex G0:0110157 4.04
—logyo(pvalue) Serine-pyruvate
aminotransferase complex |GO:0005969 4.02

Figure 6-9. The histogram of the average — log(pvalues) across 50 bootstrap trials,
testing the significance of the gene scores generated by the root nodes of the ontology of
cellular components. The p-values are generated by a two-sample t-test. On the left, we
show the histogram of the p-values. On the right, we report the description of the top 10
root nodes and their p-values after FDR correction.

Properties of Encoded Genetic Scores: The final layer of our encoding strategy
creates a genetic risk score for each root node. The risk scores are the accumulation
of all the genetic risks distributed across the child nodes. In this analysis, we explore

two ontologies and the properties of the encoded genetic risk scores.

First, we explore the ontology based on the involvement of genes in cellular
structures [56]. After model selection, the ontology consists of 5 layers with 1797
nodes and 423 root nodes. We perform a two-sample t-test (described in Section 6.2.2)
to obtain a significance level for each risk score. In Fig. 6-9 we show the distribution
of average —log,,(pvalue) across 50 bootstrap trials. In addition, we report the
description of top 10 root nodes and their mean — log,,(pvalue) after FDR correction.
The small p-values show strong evidence that the genetic scores captured by the root
nodes contain significant group-level differences. Additionally, some of the cellular
components like Amyloid-beta complex [227] and PCSK9 [228] have been previously

implicated by autism.

Second, we follow a similar strategy to explore the ontology created by the involve-
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Description GO Term | -log,,(pval)
FDR
300 Protein localization
to vacuole G0:0072665 1.26
250 Seminal vesicle development |GO:0061107 1.16
Apoptotic process in
200 response to mitochondrial
= fragmentation G0:0140208 1.01
=3 150 Isoprenoid transport GO:0046864 0.91
a Response to
§ selenite ion G0:0072714| 0.73
S 100 lung connective
tissue development G0:0060427 0.63
50 Vacuolar sequestering G0:0043181 0.55
Cyanate metabolic
0 o 1 ) -; a process G0:0009439 0.54
Response to
biotin G0:0070781 0.54
Subthalamus
logio(pralue) development G0:0021539 0.52

Figure 6-10. The histogram of the average — log(pvalues) across 50 bootstrap trials,
testing the significance of the gene scores generated by the root nodes of the ontology of
Biological Processes (BP). The p-values are generated by a two-sample t-test. On the left,
we show the histogram of the p-values. On the right, we report the description of the top
10 root nodes and their p-values after FDR correction.

ment of genes in larger biological processes. This ontology consists of 14,096 nodes, 5
layers, and 2857 root nodes. Note that this ontology is significantly larger than the
previous ontology created by Cellular Components (CC). Like before, we perform the
t-test followed by FDR correction. In Fig. 6-10 we show the distribution of p-values
and the description of the top 10 root nodes across 50 bootstrap trials. Compared to
CC-ontology, here the p-values are relatively large. This could result from the complex
interactions between 14,096 nodes. In addition, the genetic risk is divided across 2857

root nodes, so each node only captures a small portion of the genetic risk.

Path Based Analysis: In this analysis, we identify the paths between root and
leaf nodes showing differential attention patterns between proband and controls. After
performing the likelihood ratio test, we identify the nodes present along each significant
path. This analysis gives us a fine-grained understanding of the discriminative paths

in the network. In Fig. 6-11 and Fig. 6-12 we show the frequency of the top 20 nodes

161



Description GO Term freq
3000 Nuclear protein-containing
complex G0:0140513 3320
2500 SWI/SNF superfamily-type
complex G0:0070603 900
2000 RNA polymerase II
= 1500 transcription regulator
3 1000 complex G0:0090575 820
Cytosol G0:0005829 610
500 Plasma membrane signaling
receptor complex G0:0098802 480
0 aoNMMHAAETINOM®Oo OWNIDKN o | Gprotein-coupled receptor
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3 & g g g 3 2 3 g a N 8 g A 8 @ 8 Transcription elongation
n8882888888888838¢838 factor complex G0:0008023 380
0000000000000 000O00O0 Spliceosomal complex G0:0005681 370
POLOLVLOOLOLOLOOLBOLBOLVOLO ISWI-type complex G0:0031010 350
GO Terms (CC) Transcription factor TFIIH
holo complex G0:0005675 330

Figure 6-11. The frequency of the nodes present along a path with significant p-
value (< 0.05) across 50 bootstrap trials. The nodes belong to the ontology of cellular
components. The left image shows the top 20 GO terms and their frequency. The right
table gives a brief description of the top 10 GO terms.

that are present along the significant paths across 50 bootstrap trials. We want to
note that a node could appear more than 50 times if that node is common across
multiple paths. For example, in Fig. 6-9 the GO term G0:0140513 appeared 3,000
times across 50 bootstrap trials, which shows that this node is a common node across
multiple significant paths. The nodes with high frequency could potentially identify
hubs in the network with a strong association with the disorder. As a part of our
qualitative exploration, we see that in Fig. 6-11 the path-based analysis identifies
GO terms that are involved in transcription [229]. On the other hand, the pathway
analysis on the ontology of biological processes identifies processes involved in fatty
acid transport [230]. This exploratory experiment shows that GUIDE-PRS can be

used to extract discriminative biological information about the underlying disorder.

6.2.4 Discussion

We introduce a deep learning based framework that creates multiple genetic risk scores

using hierarchical information of biological systems. The main contribution of this
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Description GO Term freq

150 Long-chain fatty acid import

into cell G0:0044539 160
125 Lysosomal transport G0:0007041 920
100 Vacuolar transport G0:0007034 920
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8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 across plasma membrane G0:0015911 80
Long-chain fatty acid
GO Terms (BP) transport G0:0015909 80

Positive regulation of long-
chain fatty acid import
across plasma membrane G0:0010747 80

Figure 6-12. The frequency of the nodes present along a path with significant p-
value (< 0.05) across 50 bootstrap trials. The nodes belong to the ontology of biological
processes. The left image shows the top 20 GO terms and their frequency. The right table
gives a brief description of the top 10 GO terms.

work is the hierarchical graph-based encoder that combines genetic information and
creates risk scores associated with the disorder. The graph encoder combines genetic
risk and captures complex interactions between biological processes. In comparison
to regression or ANN-based approaches, the parameter-sharing property of graph

convolution restricts the parameter space, resulting in a highly regularized framework.

The second contribution of this work is the use graph attention to combine the
genetic risk. Graph attention provides a data-driven strategy to over-express or
suppress the generic risk of specific processes. This approach provides us with a
strategy to explore the interaction between nodes in the network. In fact, we show in
Fig. 6-12 and Fig. 6-11 that the graph attention can potentially find hubs that are

associated with the disorder.

GUIDE-PRS gives us a data-driven and interpretable framework to create genetic
risk scores. However, this approach relies heavily on prior biological knowledge, which

is often incomplete. For example, our gene-to-node mapping strategy relies on the

163



knowledge of the functionalities of a gene, but there are many genes whose functions
are unknown [231] or cannot be mapped to a node. In those cases, this model removes

those genes, thus ignoring valuable genetic information.

6.2.5 Summary

We introduce a novel strategy to create non-linear and interpretable genetic risk
scores using graph convolutions. Our model uses the knowledge of gene ontology to
combine the genetic risk in a hierarchical fashion. In addition, the model uses graph
attention to over-express or suppress the genetic risk of different biological processes,
thus providing an automatic and data-driven approach to create interpretable genetic
risk scores. In addition, the improved classification performance on autism shows
the utility of this model in generating discriminative genetic risk scores. Finally, the
exploration of the node-node interactions shows that GUIDE-PRS can be used to
extract discriminative biological information about the underlying disorder. We also
note that our framework can easily be applied to other clinical traits. In the future,
we will apply our framework to identify co-regulated biological processes to explore

the shared etiology across multiple clinical traits of autism.
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Chapter 7

Discussion and Conclusions

This chapter summarizes the main ideas and frameworks developed in this thesis. We
introduce biological knowledge-driven regularized machine learning and deep learning
models to integrate and parse imaging and genetics data modalities, with the goal of
explaining underlying biology and improving risk prediction of psychiatric disorders.
The first part of the thesis (Chapter 3, Chapter 4) introduces models to handle the
multifaceted nature of psychiatric disorders. However, in the second part of the
thesis (Chapter 5, Chapter 6) we introduce models to parse the complex genetic
architectures of neuropsychiatric disorders. Overall, all the models are geared towards
providing data-driven solutions to explore interactions between multimodal data while

shedding light on unknown causal factors.

In this concluding chapter, we will first summarize the main ideas and the scope of
our works. Next, we will provide a brief discussion on potential technical and clinical

extensions to the ideas presented.

7.0.1 Overview

In Chapter 3, we introduce a dictionary learning approach to integrate multimodal
imaging and genetics data while finding discriminative biomarkers. Our initial ap-
proach uses a matrix decomposition framework to identify brain regions with aberrant

neural activity while showing a strong association with the polygenic risk score of

165



schizophrenia. One limitation of this work is that we collapse all the SNP information
into a single scalar value, which cannot consider the interactions between the SNPs.
To address this limitation, we introduce a generative-discriminative model to integrate
SNP-level data with fMRI brain activation maps. Our generative module uses a
matrix decomposition framework to integrate multiple data modalities in a single
framework. The discriminative module guides the matrix decomposition to find rele-
vant biomarkers and predict disease risk. In addition, we introduce new mathematical
and biological knowledge-driven regularization schemes that lead to model stability
and improved risk prediction. In Section 3.2.7.4 we demonstrate that our model
achieves better classification accuracy than the baselines across all three case-control
studies of schizophrenia. In Section 3.2.7.5, we go further and present a strategy to
identify a robust set of discriminative biomarkers. Through the meta-analysis, we

show that these biomarkers are strongly related to the disease propagation pathway

of schizophrenia.

In Chapter 4, we extend our multivariate linear framework to model the non-linear
interaction between imaging and genetics using an autoencoder. Our autoencoder
frameworks are coupled with Bayesian feature selection and classifiers. The Bayesian
module provides interpretability and identifies biomarkers, while the classifiers ensure
that the biomarkers contain discriminative information. The autoencoder architecture
provides a natural way to integrate new data modalities by adding new encoder-
decoder branches. In addition, the autoencoder can handle missing data by freezing
the affected part of the network and updating the remaining weights. These properties
allow us to take advantage of large data with multiple modalities and missingness.

While the first part of the thesis deals with modeling multiple data modalities, in
the next two chapters, we focus on parsing the genetic data and providing insights about
the underlying biology of disorders. In Chapter 5, we introduce a deep Bayes variational

model to parse complex genetic architectures and identify target variants. We use the
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hierarchical Bayesian strategy and a neural network to identify putative causal variants
from GWAS summary statistics. Our approach uses a Bayesian variational framework
that imposes a binary concrete prior on the set of causal variants. We derive a
variational algorithm by minimizing the KL divergence between an approximate density
and the posterior probability distribution of the causal configurations. Correspondingly,
we use a deep neural network as an inference machine to estimate the parameters of our
proposal distribution. The neural network removes the need to handcraft relationships
between the input data and the parameter space, thus providing flexibility to handle

complex interactions across variants.

The final portion of this thesis deals with the challenges of encoding millions of
genetic variants in a single framework while providing interpretability. In Chapter 6,
we solve this problem by strategically integrating prior biological knowledge of SNP-
gene and gene-pathway interactions in a graph-based framework. Our approach uses
graph convolutional networks (GCNs) [131] to leverage the high-dimensional and
interconnected genetic relationships. We construct a sparse hierarchical graph using
gene ontology [56, 223], which provides a structurally regularized framework to encode
the whole genome genotype data. We use this strategy to encode genetic data and
integrate it with fMRI data on a population study of schizophrenia. Using detailed
ablation and comparative study, we show that this approach uses complete genetic
information to improve disease risk prediction. Another critical component of this
model is graph attention, which provides an interpretable way to combine genetic
risk in a hierarchical fashion. In addition, the graph attention allows us to track
the information flow through the graph [136]. In Section 6.1.7.7, we explored the
attention values and identified biological processes linked to schizophrenia. Moreover,
we take advantage of the graph convolution and graph attention strategy to create
interpretable and non-linear genetic risk scores associated with autism. In a preliminary

data analysis (Section 6.2.3.2), we found evidence that this approach can identify
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potential hubs of biological functions that are associated with the disorder.

7.0.2 Scope and Limitations

Our models introduced in Chapter 3 and Chapter 4 extend the prior works on

imaging genetics [11, 13, 14] and provide a joint framework for disease prediction
and biomarker identification. The models are not tied to any specific modalities
and can be extended to model imaging modalities like structural MRI, and PET
with RNA-seq and DNA Methylation data [232, 233]. In addition, the multimodal
strategies, coupled with interpretable modules, can be used as novel tools to explore
other diseases like Alzheimer’s and Parkinson’s. However, one key limitation of these
approaches is that they cannot model millions of genetic variants in a single framework.
The genetic variants are often highly correlated, which leads to problems of singularity,

and overfitting [234, 235]. This limitation restricts the model from utilizing complete

genetic information about the disorder.

In Section 1, we explain that the genetic risks associated with the polygenic
disorder are complex, and often the true signal is hidden behind false positives. Initial
finemappiong approaches [39, 89, 96] attempted to identify the true signals from
association studies, but their generative assumption often fails to handle spurious
signals from non-causal variants. In Chapter 5, we introduce BEATRICE , a robust
strategy to handle spurious association signals from non-causal variants. In this work,
we have shown that BEATRICE is highly efficient in handling the complexity arising
from mutations with infinitesimal effects [188, 203]. Thus, our model can successfully
parse polygenic traits and diseases. Additionally, the high coverage and small size
of credible sets reported in Fig. 5-4, 5-5, 5-6 show that BEATRICE can successfully
prioritize variants in the presence of LD. This property is in stark contrast with the

baseline finemapping approaches that generate numerous credible sets that do not

contain a causal variant. Taken together, we believe BEATRICE could be useful in
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eQTL studies, where multiple variants within a locus can show strong association
due to the complex LD structure present in the human genome [54]. Additionally,
there may be multiple causal variants within a locus, which adds to the complexity
of the finemapping problem [18]. However, one limitation of this model is that the
generative process is not geared toward co-localization. Co-localization is a strategy
to identify a common set of target variants from GWAS and eQTL studies, with an
underlying assumption that a variant appearing in multiple studies is more likely to

be causal than others.

In the last Chapter 6, we explore further in the realms of genetics to develop a
comprehensive model that can encode whole genome genotype data while providing
intuitions about the underlying biology. We introduce a graph convolution model
to encode genetic variants using the knowledge of gene ontology. We have used this
model to explore an imaging-genetic study of schizophrenia. However, the genetic
encoding strategy has a wider application in genetics. For example, we can replace
the gene liability scores with single-cell RNA expression [117] data and use the same
embedding strategy to identify a target cell associated with a trait. Currently, state-
of-the-art approaches use a variation autoencoder [117, 236] for encoding the RNA-seq
data. In comparison, our graph-based encoding strategy is interpretable, which can
provide further insights into the molecular pathways. Finally, we explore the use
of the encoding strategy to create non-linear and interpretable genetic risk scores.
Unlike a polygenic risk score, this strategy provides an intuition about the implicated
biological functions in a subject-specific label. Each subject has an attention network
that can provide insights about the genetic risk along multiple biological processes.
Initial evidence in Section 6.2.3.2 shows that this strategy can find potential biological
processes and cellular components affected by autism. Additionally, we can use this
model to explore the risk shared between multiple disorders like autism, ADHD,

and schizophrenia [237]. However, this approach relies heavily on prior biological
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knowledge, which is often incomplete. For example, our gene-to-node mapping strategy
relies on the knowledge of the functionalities of a gene, but there are many genes
whose functions are unknown [231] or cannot be mapped to a node. In those cases,

this model removes those genes, thus ignoring valuable genetic information.

7.0.3 Future Extensions

We identify three directions to extend our models for providing insights into the

genetic risk associated with complex disorders.

Identification of Colocalized Variants: Most GWAS risk loci lie in the non-
coding region [14, 15] of the DNA. A common hypothesis is that the variants alter the
individual’s genetic risk by affecting the gene expression profile in multiple tissues.
Recent approaches [238, 239] try to leverage the GWAS and eQTL studies to identify
causal variants, with an underlying assumption that the same causal variant will alter
the disease risk and gene expression. The current implementation of BEATRICE cannot
accommodate more than one summary statistic. However, we can modify Eq. (5.12)
and introduce another likelihood term for eQTL summary statistics originating from the
same set of causal variants that influences the GWAS results. From an implementation
standpoint, the input to the neural network will now be the concatenation of the
summary data, and the neural network output will be a common set of parameters of

the binary concrete distribution.

Extending Biological Knowledge with Data-Driven Approaches: The im-
plementation of GUIDE and GUIDE-PRS is restricted by the knowledge of the
functionalities of genes in biological processes, which is often incomplete. In order to
address these issues, we can take advantage of recent attention-based models [140] that
can provide a “soft" assignment for gene-to-node mapping. Instead of hard-coding the

mapping function of genes to nodes, we can use this ’soft’ assignments technique to
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allocate a gene to a node. However, this strategy is unconstrained and may lead to an
unstable solution. We can address that by incorporating the hard-coded mapping of
genes to nodes as priors. This strategy will ensure that the genes to node mapping
will follow the prior, but the model will have the additional flexibility to assign a gene

to different nodes.

Explore Shared Genetic Risk Between Disorders: In Chapter 6, we use
GUIDE and GUIDE-PRS to explore the biological function underlying schizophrenia
and autism. We have viewed the disorders as a binary phenotype. Recent research [30]
has shown that these disorders encompass a broad spectrum of phenotypes, with
people exhibiting different symptoms to varying degrees. This suggests that the genetic
risk for schizophrenia and autism is not due to a single gene or pathway but rather to
a complex interplay of multiple genes and pathways. However, genetic interactions
often connect genes between functional modules in a coherent manner [240, 241].
We can take advantage of this structure using GUIDE-PRS and potentially identify
co-regulated biological processes, taking one step further to identify the underlying

causal factors.

In summary, we introduce a suite of machine-learning and deep-learning tools
to handle multifaceted disorders while parsing the complex hereditary components.
Our models use prior knowledge to develop robust frameworks that are scalable with
increasing dimensions and modalities. Additionally, all the models are geared to
provide insights into the underlying biology of a disorder. This property makes our

models interpretable, thereby serving as invaluable tools for scientific discoveries.
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