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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) is a noninva-

sive neuroimaging modality that quantifies the changes in blood flow and

oxygenation in the brain at rest. Analyzing connectivity graphs extracted from

rs-fMRI can yield insight into the functional organization of the brain.

Neurosurgical resection procedures require immense precision, as the

surgeon must remove as much of the lesion while preserving maximum

functionality. An incorrect incision could cause severe or even permanent

cognitive deficits. Rs-fMRI has emerged as a preoperative mapping modality

for eloquent cortex localization for brain tumor removal surgeries as well as

epileptogenic zone removal surgeries in patients with epilepsy.

Rs-fMRI connectivity analysis usually begins with applying an existing

parcellation to define regions of interest (ROI’s) of spatially and temporally

homogeneous areas of the brain. However, these existing parcellations do not

generalize well to patients with brain tumors or epilepsy due to an atypical

rs-fMRI signature.

We present a collection of deep learning methods to analyze rs-fMRI of

atypical populations, namely brain tumor and focal epilepsy subjects, to per-

form localization of regions of interest for neurosurgery. First, we explore
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techniques to develop more accurate subject-specific parcellations for down-

stream analysis using refinement techniques. We develop a Bayesian model

with a markov random field prior to refine parcellations on a subject-specific

basis. We then present RefineNet, which jointly optimizes parcellation refine-

ment and the downstream tasks.

Then, we present our models on eloquent cortex localization for tumor pa-

tients. We leverage graph neural networks to perform localization. We extend

our model using both temporal and spatial attention models applied to dy-

namic connectivity, where our attention mechanisms capture spatiotemporal

features that boost localization performance.

Next, we present our models on epileptogenic zone localization for epilepsy

patients. We develop a graph convolutional network called DeepEZ which

uses anatomical connectivity regularization and a biologically inspired loss

function. We extend this work to the dynamic connectivity case as well, using

transformer networks to capture temporal nuances. Lastly, we tackle the noisy

label problem through the context of epileptogenic zone localization, and

develop a framework to perform localization even when trained on a dataset

with entirely noisy labels.
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propagated through Lα. Top: after pretraining, the localization

network is trained only with the obseved labels Y. . . . . . . 205

7.4 We use the edge-to-edge convolutional neural network archi-

tecture with an ANN to predict α in a fully supervised manner.

This network learns the connectivity patterns associated with

mislabeled nodes. . . . . . . . . . . . . . . . . . . . . . . . . . 207

xxxiii



7.5 A cartoon to illustrate our sampling procedure for creating our

simulated dataset. Blue refers to the observed label Y and red
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Chapter 1

Introduction

The human brain is both widely studied and still not fully understood in it’s

function and connection from structure to function. It is malleable and able to

adapt to trauma or the presence of a lesion. More so, the human brain and

functional organization are very different from person to person, especially

when pathology is present. The brain is comprised of functionally connected

hubs, that coordinate together to perform complicated tasks. Non-invasive

imaging techniques, such as magnetic resonance imaging (MRI), positron

emission tomography (PET), computed tomography (CT), and functional MRI

(fMRI) can be used to provide a glimpse into the structure and function of the

brain [1]. Examples of different analyses that are done with imaging range

from segmentation of structures of interest from structural MRI [2] to using

statistical methods to identify regions of high or abnormal functional activity

from fMRI [3].

Task-based fMRI (t-fMRI) is a type of functional imaging modality where

the subject is asked to perform a task, such as moving their fingers or speaking

a sentence, while in the fMRI scanner. Task fMRI is used primarily to localize
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specific functional networks of interest [4]. Resting-state fMRI (rs-fMRI), on

the other hand, is a type of functional imaging modality which captures

spontaneous fluctuations in the brain while the subject is at rest, from which

functional systems in the brain can be identified [5]. Functional connectivity

(FC) analysis makes use of steady state co-activation patterns found in rs-

fMRI to identify connectivity hubs in the brain and functional networks of

interest [6]. FC analysis has gained a lot of popularity in the past decade as a

means for answering clinical questions such as diagnosing certain neurological

disorders, such as autism spectrum disorder (ASD) [7], or localizing functional

regions of interest, such as the language or motor networks [8]. The most

common data structure used to summarize FC is a connectivity graph, where

nodes represent brain regions and edges represent the functional connectivity

between them [9]. The work in this thesis will be primarily applied to rs-fMRI

and rs-fMRI connectivity represented by graph structures.

Due to the advent of more compute power and larger datasets, deep

learning has made a substantial impact on rs-fMRI analysis and potential for

clinical use of rs-fMRI[10, 11]. Deep learning has the capability of successfully

performing tasks such as ASD vs. NC classification [12] or Alzheimer’s vs

NC classification [13] with higher accuracy than traditional machine learning

models. The methods used in this thesis are primarily deep learning based.

1.1 Subject-specific differences in rs-fMRI

The use of rs-fMRI to study the brain has been around since the early 1990’s,

and analysis has typically been done on a group-level, where data is averaged
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across multiple participants and then used for subsequent analysis [14]. How-

ever, these studies have failed to identify functional characterization at the

individual level. It is understood that every individual has a unique functional

organization, as no two brains are the same, and that uniqueness should be

taken into account during mathematical modeling. More so, subject-specific

approaches are necessary for subjects from aytpical cohorts, whose functional

connectivity profile will not fit an expected template [15].

1.1.1 Functional parcellations

A functional parcellation seeks to segment the brain into spatially continuous

and temporally homogenous regions of interest (ROI’s), and is applied to rs-

fMRI as a common preprocessing step for improved SNR and dimensionality

reduction in analysis pipelines [16]. However, these group-level parcellations

are derived from a healthy cohort, which ignore subject-specfic differences.

Moreover, these parcellations are especially troubling for atypical cohorts,

such as subjects with neurological disorders or lesions (tumors).

The first part of this thesis will aim to develop automated methods to

derive subject-specific parcellations using machine learning and deep learning

techniques. Specifically, we will introduce and leverage a Bayesian model with

a Markov Random Field (MRF) prior to perform subject-specific refinement

on existing group level parcellations, which will be validated on a tumor

cohort. We then introduce a novel neural network refinement module that

leverages learnable weights in a graph structure for parcellation refinement

that is capable of improving upon existing rs-fMRI deep learning analysis
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tasks. We validate that method using common rs-fMRI analysis tasks such as

predicting ASD, fluid intelligence scores, and language localization.

1.1.2 Dynamic connectivity analysis

Not only do individuals have a unique spatial functional organization, but

they also have a unique temporal evolution of connectivity patterns. The

sub-field of dynamic functional connectivity (dFC) within rs-fMRI analysis

aims to track and identify changes in connectivity patterns throughout the

rs-fMRI scan [17]. The underlying hypothesis governing dFC analysis is that

functional networks "emerge" or are more strongly connected at different time

points throughout the scan. Typically dFC is created with a sliding window

technique, where a separate connectivity graph is created from segments of

the rs-fMRI data. The models present in this thesis will make use of both static

FC and dFC.

1.2 Eloquent cortex localization for brain tumor re-
section

Neurosurgery resection procedures for brain tumor removal requires immense

precision, as the surgeon must remove as much of the lesion as possible while

preserving maximal neural functionality. An incorrect incision here can cause

severe or even permanent deficits [18, 19]. The eloquent cortex includes

regions of the brain that are responsible for motor functionality and language

generation and comprehension [20, 21]. The eloquent cortex must be preserved

during a neurosurgery to avoid severe cognitive deficits. The gold standard
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for mapping the eloquent cortex is invasive electrocortical stimulation (ECS)

while the patient is awake [22]. While accurate, ECS can be traumatic for the

patients, who must remain functioning during the procedure. Noninvasive

t-fMRI is a popular alternative preoperative mapping tool [23, 24]. However,

the resulting t-fMRI activations may be unreliable for certain cohorts due

to cognitive impairments, speech aphasia, or an inability to follow the task

protocol [25].

Using rs-fMRI connectivity to localize the language and motor regions

in brain tumor patients is a promising alternative to t-fMRI as a means of

circumventing the issues associated with t-fMRI [26]. The next part of this

thesis utilizes deep learning models applied to rs-fMRI connectivity to per-

form eloquent cortex localization, which is validated on both an in-house

collected dataset as well as an artificially created tumor dataset from healthy

rs-fMRI. The models presented in this part of the thesis will sequentially build

on eachother, introducing new deep learning techniques applied to graph

structures and then dFC to improve localization performance.

1.3 Epileptogenic zone localization in focal epilepsy
patients

Epilepsy is one of the most common neurological disorders in the world, and

is characterized by the patient having recurrent abnormal neural discharges

that lead to seizures [27]. Focal epilepsy is where the seizures originate from

the same region in the brain. Medication is one option for treatment, but

for those who are medicaton refractory, surgical resection of the area from
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which the seizure originates is a viable option [28]. Identifying the EZ using

intracranial electrodes provides accurate monitoring, but is highly invasive

and can introduce surgical risks [29]. Presurgical planning procedures for

identifying the EZ are most often based on the electroencephalogram (EEG)

modality [30]. However presurgical evaluation relying on ictal recordings is a

time consuming procedure due to the low frequency of seizures during the

recording [31].

Using rs-fMRI connectivity to localize the EZ in focal epilepsy has emerged

as an alternative modality. The next part of this thesis develops graph based

neural networks to localize the EZ using rs-fMRI connectivity. The models

presented will build upon the last, where we introduce novel dFC methods

and data augmentation techniques to improve EZ localization as well.

1.4 Noisy labels in neuroimaging

With regard to neuroimage analysis, deep learning methods have already

achieved impressive and unprecedented performances, partially due to the

growing size and availability of datasets. However, it is very difficult to

curate large datasets with reliable labels, as this is a very time consuming task.

A solution is to use pre-trained models to perform the labeling themselves,

but these models often suffer from large amounts of label noise, or incorrect

labels [32]. As discussed, using t-fMRI as ground truth for eloquent cortex

localization can be troublesome, and not entirely accurate. Furthermore, it is

heavily contingent user specified thresholds of t-fMRI activation maps [33].

The last part of this thesis and future work aims to address the noisy label
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issue in the context of rs-fMRI analysis, specifically applied to EZ localization

for focal epilepsy patients. Regarding EZ localization, models can be trained

using the entire resection area as the EZ ground truth, but it is well known

that the true EZ will lie within the resection, as the surgeon will be liberal

with resection as to make sure all of the EZ is removed. We introduce a novel

deep learning technique that can handle noisy labels in the context of EZ

localization. We introduce novel data augmentation techniques and sampling

procedures to show robust training against noisy or incorrect labels, and show

how the proposed model performs on a real dataset.

1.5 Summary and outline

In summary, rs-fMRI has emerged as a powerful tool to provide insight into

the functional organization of the brain. Deep learning models applied to

Rs-fMRI connectivity have the ability to aid clinicians in challenging tasks

such as eloquent cortex localization for tumor removal procedures, or EZ

localization for EZ resection procedures. Finally, we will conclude this thesis

with a chapter on ongoing work to tackle the noisy label problem that is

present within our studies.

Chapter 2 will introduce relevant background and literature for this the-

sis. Imaging acquisition and details for structural MRI, t-fMRI, rs-fMRI, and

diffusion tensor imaging will be presented. A brief overview of connectivity

analysis and ICA will be discussed. An overview of existing methods to

perform parcellation refinement, automated eloquent cortex localization, and

automated EZ localization will be presented. An overview on commonly used

7



deep learning architectures will be presented. Finally, a description of each of

the datasets used in this thesis will be presented.

Chapter 3 will show the work we have done and published on tackling the

subject-specific parcellation refinement problem. The first model presented in

chapter 3 will be a bayesian model with an MRF prior for refinement, which

was published in the connectomics in neuroimaging (CNI) workshop as a

part of the Medical Image Computing and Computer Assisted Intervention

(MICCAI) 2018 conference [34]. Then we will conclude the chapter with intro-

ducing our deep learning based approach RefineNet, which was presented at

MICCAI 2022 [35].

Chapter 4 will describe the work we have published on eloquent cortex

localization using a static connectivity graph input. We start with our base

graph neural network (GNN) presented at CNI MICCAI 2019 [36], which was

extended to a multi-task learning setting and validated on more comprehen-

sive experiments and an augmented dataset in our medical image analysis

journal [37].

In chapter 5, we extend our analysis to the dFC case, and present our LSTM

based model from the machine learning in clinical neuroimaging (MLCN)

workshop from MICCAI 2020 to improve localization using temporal atten-

tion [38]. Finally, we conclude this chapter with our work presented at the

Information Processing in Medical Imaging (IPMI) 2021 conference, which

extends on prior work by adding convolutional based spatial attention models

to improve localization performance [39].

Chapter 6 presents the work we have published on EZ localization, which
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primarily focuses on using graph convolutional networks. First, we will

present our DeepEZ model (published in IEEE transactions in biomedical en-

gineering), which uses anatomically regularized graph convolution networks

to perform EZ localization on a small dataset [40]. We extend our journal work

to the dFC case, and employ transformer networks alongside data augmenta-

tion techniques in the next model we present, which was recently published

and presented at the International Symposium for Biomedical Imaging (ISBI)

2023 conference [41].

Chapter 7 presents ongoing and future work within the realm of noisy label

issues in our classification (localization) models, specifically regarding epilep-

togenic zone localization. We have been developing a data-driven approach

to identifying label uncertainty which makes use of a shared representation

learned from connectivity data. We will present the mathematical model, the

deep networks and optimization scheme, and the accompanying experiments

, which include localization performance on real focal epilepsy subjects. We

plan on submitting this as a new conference paper publication.
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Chapter 2

Background

In this chapter, we will go over a comprehensive background for this thesis.

First, we will present the acquistion and details on the different neuroimaging

modalities that are present in this thesis. Next, we will give a brief overview of

functional parcellations and existing methods for creating parcellations. Then

we will give an overview of functional connectivity analysis with an emphasis

on prior machine learning work in the eloquent cortex and EZ localization

fields. Then we will go over the foundations of deep learning and common

network architectures as a preliminary to discuss the models present in this

thesis. Finally, we give the acquisition, preprocessing, and relevant details for

each of the datasets used in this thesis.

2.1 Neuroimaging modalities

Both structural and functional neuroimaging modalities can give comple-

mentary and useful information for brain connectivity analysis. Each of the

modalities presented in this section will be used in the models presented later
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in this thesis, with rs-fMRI connectivity as the model input. Strutural MRI is

used to delineate the EZ resection for the focal epilepsy subjects and the tumor

boundaries for the tumor subjects. Task fMRI was taken in the tumor cohort

to act as ground truth for localizing the motor and language networks. Finally,

diffusion tensor imaging from healthy subjects was used in regularizing the

EZ localization models.

2.1.1 Structural MRI

Structural MRI is a noninvasive imaging tool that provides information on the

physical structures of the brain, where different tissues exhibit different con-

trasts in the resulting 3D image. The acquisition starts with using a magnetic

field to align the water molecules to the same orientation before applying a

pulse sequence. Then the scanner applies an excitation pulse (using radio

frequency), which tilts these nuclei from their alignment. The nuclei then

precess, or return, back to the alignment. Essentially, the time it takes for the

nuclei of a certain tissue to precess, or relaxation time, is directly proportional

to the intensity for which that tissue shows up in the resulting structural MRI.

The final image contrast depends on design parameters such as echo time (TE)

and repetition time (TR).

The sub-field of automated segmentation within neuroimage analysis has

made large strides with the advent of deep learning [42]. This thesis makes

use of manual segmentation of structural MRI to provide important label

information for both the brain tumor models and the EZ localization models.
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Figure 2.1: The hemodynamic response function.

2.1.2 Functional MRI

As opposed to structural MRI, functional MRI is a noninvasive neuroimaging

tool that tracks blood flow throughout the brain over time. Specifically, the

protein hemoglobin is tasked with bringing oxygen to neurons during cogni-

tive functioning. When blood is moving towards neurons, the hemoglobin is

in a diamagnetic state and when blood is moving away from neurons (after

oxygenation) the hemoglobin is in a paramagnetic state. Blood oxygen level-

dependent (BOLD) fMRI uses the a T2-weighted protocol to provide contrast

in the fMRI image produced. Increases in blood oxygenation levels result

in an increased T2 value and therefore a higher intensity in the image [43].

Representation wise-, fMRI is a 4D image, where the first three dimensions

represent the voxel spatial coordinates and the last dimension represents time.

Typically, there are hundreds of thousands of voxels per scan, which makes

this a high-dimensional data structure.

Studies and experiments involving fMRI rely on the fact that blood flow

and neuronal activation are coupled. We use the hemodynamic response

function (HRF) as a transfer function linking neural activity with the fMRI
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signal [44]. Fig.2.1 shows an example of the function. Studies show that

the shape of the HRF varies across brain regions and individuals [45]. It is

generally difficult to identify the separate contributions of neural and non-

neural factors regarding the HRF shape. While fMRI is widely used in research

studies, the relationship between the HRF and actual neural activity is not

entirely understood.

2.1.2.1 Task-based fMRI

Traditional fMRI experiments use a block design in which the subject is in-

structed to perform experimental and control tasks in an alternating sequence

or 20-40 sec blocks [46]. Signal from hundreds of thousands of voxels are

recorded during the t-fMRI scan and the goal of t-fMRI is to localize the spe-

cific regions or cognitive systems which are responsible for the experimental

protocol administered. Changes in the fMRI related to the experimental and

control tasks to identify these regions have been analyzed in different ways

such as subtraction, correlation, and time frequency analysis [46]. However,

the general linear model (GLM) has been the de-facto standard for identifying

regions of high-activity from t-fMRI.

The GLM assumes that each experimental block has a linear contribution

to the overall fMRI response. Let xi ∈ RT×1 be the time series associated

with voxel i. There is a design matrix D ∈ RT×S for which the experimental

protocol is encoded in. As discussed, the HRF is a transfer function that

links neural activity with the fMRI signal. This HRF gets convolved with

the protocol to obtain the columns of D. The goal of GLM is to solve for the
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following linear regression

xi = Dβi + ϵi (2.1)

where ϵ represents a noise term and we are primarily interested in solving for

βi, the activation coefficients assigned to voxel i. We can solve for β̂ using the

least-squares solution β̂ = (DTD)−1DTx. The larger the βi value, the more

active that voxel i is in response to the task stimulus. A common technique to

identify functional systems from t-fMRI is to overlay the activation coefficients

β on the brain and threshold the values at a certain level to only retain the

high activations. Later in this thesis, we will make use of this technique to

obtain ground truth labels for language and motor networks in the brain

tumor dataset.

2.1.2.2 Resting-state fMRI

Unlike t-fMRI, resting-state fMRI (rs-fMRI) is taken with the subject fully and

completely at rest, i.e. without an administered task paradigm to follow. Spon-

taneous fluctuations in the BOLD signal during the rs-fMRI scan are known to

be correlated within regions that work together to perform a cognitive task [47,

48]. This effect was first identified in the seminal 1995 paper by Biswal [5],

and underpins the core assumptions of many research studies today [49].

Studying regional co-activation patterns found in rs-fMRI is a sub-field

called functional connectivity (FC) analysis, which uses the aforementioned

assumptions to draw inference for research studies. For example, correlations

between the time series values of rs-fMRI can be used to identify brain differ-

ences in patients with Autism Spectrum Disorder (ASD) [50] or can used for
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classification of the different stages of Alzheimer’s Disease [51]. Furthermore,

rs-fMRI provides a useful alternative to t-fMRI in identifying functional sys-

tems due to the potential downfalls of t-fMRI, such as inability to perform the

task. Rs-fMRI is an option for pediatric populations as well.

Each model in this thesis will use rs-fMRI as the primary input. First,

we will explore subject-specific differences in functional organization using

rs-fMRI connectivity. Then, we will show predictive power rs-fMRI has

in identifying the eloquent cortex in brain tumor patients. Then we will

discuss rs-fMRI as a modality for which EZ localization is possible, and finally

conclude with a study on noisy labels that can likely occur in these studies.

2.1.3 Diffusion tensor imaging

White matter in the brain is composed of bundles of nerve fibers that con-

nect neurons in different brain regions. Diffusion tensor imaging (DTI) is a

neuroimaging technique that uses MRI to identify white matter structures

in the brain. The diffusion of water molecules goes in the direction along

white matter bundles as opposed to across them. DTI uses MRI to leverage

this property in its imaging acquisition. It is common to use fiber tracking

algorithms to construct maps of the structural pathways associated in the

brain. From the clinical point of view, DTI has shown regional differences

in certain neurological disorders such as Multiple Sclerosis (MS) [52] and

Alzhemier’s Disease [53].

Complementary to functional connectivity extracted from rs-fMRI data,

DTI provides a structural connectivity profile of the brain, highlighting the
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density of white matter bundles that connect different ROIs in the brain.

Recent advances in neuroimaging techniques have been making use of a

multi-modal approach using both structural and functional connectivity to

improve the downstream task. Some examples include using structural and

functional connectivity to improve ASD characterization [54] or Alzheimer’s

Disease [55]. We will use DTI of healthy subjects in the EZ localization models

in this thesis to act as an anatomical regularization to our network.

2.2 Functional parcellations

Rs-fMRI suffers from the curse of high-dimensionality, where scans can be on

the order of hundreds of thousands of voxels. A parcellation seeks to segment

the brain into spatially continuous and functionally synchronous regions of

interest (ROI). Due to voxel-level variability, rs-fMRI data is often analyzed

at the region level based on a predefined brain parcellation, where each ROI

can contain hundreds of voxels [56]. Parcellation construction can occur on

the group-level, using many subjects’ data, or the individual level. There

exists both anatomical parcellations, which segment anatomical structures,

and functional parcellations, which seek to use functional imaging to segment

functionally cohesive regions [57]. There exist many parcellations in the

literature, and there is no one de-facto standard or way of evaluating which

parcellation is better than the rest [58].
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2.2.1 Group-level approaches

Most parcellation schemes are constructed on group-level averages; here

we will describe a few of the many existing parcellations. The commonly

used Craddocks functional parcellation is constructed by employing spectral

clustering on 41 healthy subjects’ rs-fMRI data [59]. The method varies the

variable k to obtain parcellations with 100− 1000 ROIs. The widely used

Brainnetome atlas uses multi-modal data (rs-fMRI and DTI) and employs

clustering algorithms on seed based correlation matrices in conjunction with

tractography connectivity information on 40 healthy subjects to obtain a

parcellation with 246 ROIs [60]. Parcellations can be coarse as well, with

fewer ROIs. The Yeo atlas uses a surface registration technique followed by

clustering of 1000 subjects’ data to obtain both a 7 ROI and 17 ROI atlas [61].

While applying a group-level parcellation to the rs-fMRI as a preprocessing

step is the de-facto standard for connectivity analysis, it is well understood

that functional landmarks vary from person to person, and therefore these

parcellations might not capture the correct boundaries for the entire cohort [62].

Furthermore, group-level derived parcellations are usually construced from

healthy subjects’ data, which is especially troublesome with lesional (tumor)

or other neuroatypical cohorts [34]. For the problems addressed in this thesis,

developing subject-specific approaches for parcellation construction would be

more beneficial for analysis because we are interested in clinical populations

such as brain tumor cohorts and epilepsy cohorts.
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2.2.2 Subject-specific approaches

In contrast to group-level approaches, subject-specific approaches aim to

segment one subjects’ rs-fMRI data at a time. The work in [63] uses a com-

bination of seed region growing alongside spatially constrained hierarchical

clustering to obtain a single subject parcellation. The authors validated their

method on test-retest reliability of recovered parcellations and comparision

with task-based obtained clusters. The work of [64] describes a method to

obtain single-subject morphological parcellations. Their method constructs

similarity graphs based on morphological indexes and they use test-retest as

a validation metric. While subject-specific approaches for parcellation con-

struction might work better for our tasks in theory, one can’t draw ROI-level

correspondence using a subject-specific approach. Therefore, inference drawn

from training models on data using multiple single-subject parcellations isn’t

feasible.

2.2.2.1 Parcellation refinement

To circumvent the issues assosciated with both group-level and single-subject

parcellation construction techniques, parcellation refinement techniques have

gained popularity in recent years. A parcellation refinement technique makes

use of a group-level derived parcellation, such as the Craddocks atlas, and then

reassigns voxel parcel membership on a subject-specific basis. Therefore, there

is a group-level concordance between subjects and the boundaries vary from

subject to subject to capture individual functional differences. For example,

the work of [65] iteratively reassigns voxel membership based on the pearson’s
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correlation coefficient between the voxel and the mean time series defined by

each parcel. However, this method does not ensure spatially continuity in the

resulting parcels and requires the user to specify parameters. In the next main

chapter of this thesis we develop two different models to perform parcellation

refinement.

2.3 Connectivity analysis

Functional communication between brain regions, as highlighted through

rs-fMRI, plays a key role in complicated cognitive processes. Therefore, it is

important to understand and examine functional connectivity to learn more

about individual brain organization. Functional connectivity (FC) is defined

as the temporal dependency between spatially remote regions in the brain [66].

Each model in this thesis will make use as functional connectivity as summa-

rized in the form of a connectivity graph from rs-fMRI as the input. More

specifically, the models presented will identify key connectivity similarity and

differences between individuals to maximize performance on the downstream

task.

2.3.1 Functional concordance: seed based analysis

Rs-fMRI studies have shown the presence of spontaneous fluctuations within

regions of the brain , usually between the frequency band of 0.01− 0.1 Hz [67].

Despite the lack of an experimental task present, these signals have been

found to be strongly correlated between certain structures in the brain across

different subjects. The de-facto standard for defining connectivity between
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brain regions is to take the pearson’s correlation coefficient between the time

series associated with different voxels in the rs-fMRI scan. Given voxels i and

j, with associated time series xi and xj, the correlation coefficient ρi,j is defined

as

ρi,j =
xT

i xj

||xi||||xj||
(2.2)

Seed based analysis (SBA) is a common rs-fMRI analysis technique in

which the connectivity of a different seed, or small region in the brain, with

the rest of the brain is assessed [8]. The resulting seed based maps are then

thresholded at a user specified threshold before analysis. This method of

analysis has been used to compare connectivity across different cohorts [68].

The seed is defined as a spatially continuous group of voxels that is chosen a

priori and is usually determined from pre-existing domain knowledge. Seed

based analysis has been useful for identifying brain systems reliably across

subjects or cohorts, specifically for healthy subjects and large commonly found

networks such as the visual network [69] or the motor network [70].

Despite its success, seed based analysis is not suited for the goals of the

models presented in this thesis. First, SBA heavily relies on accurate a priori

knowledge of seed placement, which is very troublesome for a brain tumor

cohort, where the size and location of the tumor will disrupt the neuronal

connections in those regions. In general, SBA will work better for healthy

cohorts. Furthermore, the user defined threshold proves to be troublesome

and also makes these methods not fully automated [71]
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2.3.2 ICA for rs-fMRI analysis

The independent component analysis (ICA) method for defining functional

connectivity emerged as a very popular and useful tool in rs-fMRI analy-

sis [72]. ICA is a method for separating a multivariate signal into additive

sub components, specifically by assuming statistical independence between

the extracted sub components. Both subject-level and group-level ICA have

shown success in network identification for rs-fMI studies [73].

Fig. 2.2 shows a visual representation of spatial components extracted

from rs-fMRI data using both individual and group ICA [72]. The spatial

components extracted from ICA applied to rs-fMRI are assumed to be either

functional sub-systems or noise components. For example, the spatial map on

the bottom right of Fig. 2.2 represents the motor network. Group ICA applied

to rs-fMRI has made strides in various sub-fields of rs-fMRI analysis, such as

characterizing ASD [74] or Alzheimer’s disease [75].

2.3.2.1 Eloquent cortex localization prior work

Here we will go over non-deep learning techniques that have been applied to

rs-fMRI of tumor patients to identify the language and motor networks. In

the SBA domain, the work of [76] uses lateralized anatomical seeds to localize

bilateral activations on the supplementary motor area in tumor patients. The

drawback from this method is that it requires an expert to manually select the

seed location, which is time consuming and can vary greatly from patient to

patient due to tumor size and location.

Using ICA on rs-fMRI has emerged as a potential way of identifying
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Figure 2.2: Visual representation of individual (top) and group (bottom) ICA applied
to rs-fMRI data.

language and motor regions in brain tumor patients [77]. The work of [33]

describes a method that uses group ICA alongside manual thresholding and

selection on tumor patients to identify language network components. The

drawback to these methods are that they are not fully automated, and require

an expert to manually set a threshold for the ICA and select the components.

2.3.2.2 EZ localization prior work

Here we will go over machine learning techniques applied to rs-fMRI of

epilepsy patients to perform EZ localization. The earliest work of [78] com-

puted network theoretic measures from rs-fMRI data. The authors used

outlying values in these network measures, as compared to a healthy cohort,
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to define the EZ for each epilepsy patient. While promising on a small val-

idation dataset, similar to the eloquent cortex prior work, the performance

requires careful tuning of different threshold values. The follow-up work

of [79] proposed a hierarchical Bayesian model that inferred patient-specific

hubs of abnormal connectivity. Both of these studies rely on comparison with

a normative cohort and the [79] paper only validated with six subjects.

The work of [80] takes a different approach by first running independent

component analysis (ICA) and then constructing a set of rules (e.g., asymmetry,

power spectrum) to select the components associated with the EZ. While the

authors demonstrate highly promising localization performance, they rely on

visual inspection to select between candidate EZ components. Thus, a careful

read of the method suggests that it is not fully automated. Specifically, the

authors rely on visual inspection to select between candidate EZ components.

Finally, the work of [31] also runs ICA on the rs-fMRI data and extracts a set of

hand-crafted features from the components. In this case, the authors employ

a support vector machine classifier to automatically learn which components

are associated with the EZ. While the authors demonstrate good localization

performance on some patients, the reported sensitivity is low for others.

2.3.3 Connectivity graphs

A connectivity graph summarizes the functional co-activation patterns found

in an rs-fMRI scan. Fig. 2.3 shows the workflow to obtaining a connectivity

graph. A parcellation is applied to the rs-fMRI data and typically the time

series values defined by each ROI is averaged to get one mean time course
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Figure 2.3: The pipeline for obtaining a functional connecivity graph starts with a
parcellation with P ROIs. The average time series for each ROI is taken and typically
the Pearson’s correlation coefficient between regions is used to populate the P× P
connectivity graph.

that summarizes the fMRI at that location. Typically the Pearson’s correlation

coefficient between each pair of mean time series is used as the entries of

the graph. However, a similarity graph containing just entries between 0− 1

is also typically used by taking a positive transformation of the Pearson’s

correlation coefficient [36].

Many rs-fMRI analysis works use the connectivity graph as an input data

structure. From here, one can extract local and global network properties

associated with each node within the brain, as defined by the parcellation

chosen. For example, the work of [81] uses graph theoretic features such as

node degree, betweeness centrality and eigenvector centrality to characterize

brain networks. Features defined by the graph can also be input to common

machine learning techniques. For example, the work of [82] uses a support

vector machine on graph theoretic features from rs-fMRI to classify Parkin-

son’s Disease. In this thesis, we will use the entire connectivity graph as the

input to our models.
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2.3.4 Dynamic functional connectivity

There exists growing evidence that whole-brain functional connectivity changes

over time, and that the brain goes between different intrinsic states of connec-

tivity throughout the rs-fMRI scan. The field of dynamic functional connectiv-

ity (dFC) aims to quantify and track these changes and improve upon com-

mon rs-fMRI analysis tasks using dFC. For example, the work in [83] uses k-

means clustering on dFC matrices to identify differences among schizophrenic,

healthy, and bipolar subjects. The work in [84] analyzes multiple networks us-

ing different time scales combined with a support vector machine to perform

ASD classification. In this thesis, we will leverage dFC to improve localization

for both the eloquent cortex and EZ work.

One way to obtain dFC input graphs is to use the sliding window tech-

nique. Here, multiple connectivity graphs are computed using the Pearson’s

correlation coefficient on windowed sub-segments of the rs-fMRI scan. While

Fig. 2.3 shows the process of getting one static connectivity graph, the sliding

window technique obtains multiple connectivity graphs for one rs-fMRI scan.

Another way of identifying dFC is to use dynamic conditional correlation,

which introduces a time-varying matrix estimation problem to model the

evolution of dynamics within the scan [85]. The work in [86] introduces an

approach called dynamic sparse connectivity patterns, which leverages matrix

factorization and graphical lasso to obtain dFC. While many methods for

obtaining dFC exist, the sliding window is the most commonly used in the

literature.
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2.4 Deep learning

The development of the perceptron model and artificial neural networks

(ANNs) has been around since 1959 [87], but deep learning has only taken

a front and center presence in machine learning in the past two decades,

likely due to the increases in compute power and size and availability of

datasets. Deep learning has shown large performance gains in the fields of

image classification [88] and text classification [89]. As opposed to traditional

machine learning classifiers, deep learning models seek to learn the optimal

classification function in a completely data-driven manner. The underlying

idea is that deep learning models do not need hand-crafted feature selection,

as opposed to traditional machine learning models.

Deep learning models extract higher-order representations of the data

via different layers, where each layer is parameterized by a set of weights.

Ultimately, the goal of deep learning is to approximate a function y = f ∗(x; θ)

by learning the optimal θ∗ using a technique called backpropagation. The

different layers represent different sub-functions within the overall function.

A nonlinear activation function is applied in between each layer so that the

network can learn nonlinear relationships in the training data, thus expanding

their representational power. There are three main categories of deep learning

layers that are all used to process different types of data efficiently. These

are fully-connected layers, convolutional layers and recurrent layers. In this

section, we will mathematically describe these types of layers and conclude

with a description of optimization and training of neural networks.

26



2.4.1 Fully-connected neural networks

The fully-connected neural network (also called the multi-layer perceptron,

linear layer, or artificial neural network) was first introduced in [87] and is

the most simple type of neural network layer. The perceptron model was first

introduced as a way to model how neurons fire, and thus the term neural

network was introduced. The fully-connected layer connects every input

neuron to every output neuron in a linear fashion. The layer calculates the sum

of products of the inputs and their corresponding weights. Mathematically, let

h(l−1) be the previous layer’s activations, the forward propagation equation

for a fully-connected layer is

h(l) = σ(h(l−1)Wl + bl) (2.3)

where Wl is a matrix of learned weights, bl is a learned bias, and σ is a non-

linear activation function. Typically, there is one input layer, one output layer,

and multiple intermediate, or hidden layers, in ANNs. Fully-connected layers

are also usually the final layer of a classification model, even if the rest of the

network uses different types of layers. Furthermore, the number of neurons

in an ANN is an important hyper-parameter of choice because it defines the

complexity of the function that the ANN can approximate [90].

2.4.1.1 Activation functions

The power of neural networks is in the fact that they act as a universal func-

tion approximator, capable of approximating any function if the network has

enough depth [91]. The key to this finding is the application of an activation
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function after the operation of a neural network layer. Specifically, the activa-

tion function is nonlinear, which extends the learning capabilities of neural

networks from just linear transformations of the data to any arbitrary function.

Therefore, the application of an activation function is crucial in understanding

why neural networks are such powerful representation learning tools.

Here we will go over four commonly used activation functions. The first

popular activation function is the sigmoid function, which restricts the output

to be between 0− 1. The sigmoid function is not widely used in the current

literature due to the fact that it has shown to slow down training because

of its non-zero mean [92]. The hyperbolic tangent (tanh) activation function

aims to mitigate this by outputting values between −1 and 1. However, both

of these activation functions suffer from potential saturation during training.

Saturation, or the phenomenon of a neuron predominantly outputting values

close to the boundary values of an activation function, makes gradient descent

slow and training inefficient. Specifically, the derivative values are very small

near the asymptotes of the activation functions [93]. The rectified linear

unit (ReLU) activation function emerged as an alternative to mitigate these

ill-effects associated with sigmoid and tanh. ReLU(x) simply outputs x if

x > 0 and outputs 0 otherwise. Therefore, there is no clipping at the upper

bound of the activation function. Another advantage of the ReLU function is

representational sparsity, or the fact that it can output a true 0 value. However,

there is a potential disadvantage for having gradients exactly equal to 0 during

training and that is the unit may never activate and not get out of this inactive

regime. The leaky ReLU activation aims to mitigate issues associate with
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ReLU by allowing for a small, non-zero gradient when x < 0. The leaky ReLU

activation sacrifices hard-zero sparsity for more robust training.

sigmoid(x) =
1

1 + e−x

tanh(x) =
ex − e−x

ex + e−x

ReLU(x) = max(0, x)

LeakyReLU(x) = max(αx, x) 0 < α < 1

(2.4)

2.4.2 Convolutional neural networks

One large limitation of ANNs is they tend to struggle with the complexity

associated with processing color images or videos. The next main branch of

neural network architectures that we will discuss is the convolutional neural

network, which uses filters (or kernels) of varying sizes to process data and

perform feature extraction. The most common CNN layer is 2D and is used

to process images, but it should be noted that both 1D and 3D CNN layers

exist as well, which are capable of processing time series data or videos. For

simplicity, we will just include the 2D filter equation. Suppose we have a

N × N square neuron layer which is followed by the convolutional layer. Let

σ() be the activation function and we have filter W ∈ Rm×m and bias b, the

resulting output of the layer will be of size (N −m + 1)× (N −m + 1) with

the following forward propagation equation.

x(l)ij = σ
(︁ (m−1)

∑
c=0

(m−1)

∑
d=0

Wcdx(l−1)
(i+c)(j+d) + b

)︁
(2.5)
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It is important to note that the equation shown was just for one filter when

usually convolutional networks have multiple filters associated with one

layer. As shown, the filter takes direct spatial neighborhood information to

perform feature extraction while simultaneously performing downsampling

or dimensionality reduction between layers. For this reason, CNNs typically

work well on data that have spatially continuous features, such as images

or videos. CNNs learn representations which are symmetric to spatial and

temporal transformations of the data. CNNs aim to mimic the visual system

in humans, and have made vast improvements in image classification and

computer vision.

2.4.3 Graph convolutional networks

Graphs arise in many real-world applications, such as social network analysis,

traffic prediction, and brain connectivity analysis [94]. While traditional

CNNs work well for data with spatially continuous features, such as images,

they fail to generalize well to graph structures due to the non-euclidean and

complex nature of graph data. In this section, we present the spatial graph

convolutional network, which work on a local neighborhood of nodes. Let

A ∈ RN×N be a binary adjacency graph which has value Aij = 1 when nodes

i and j are connected and 0 otherwise. The layer propagation rule for spatial

graph convolution is as follows, where W and b represents the learnable

weights and bias:

H(l) = σ
(︁
AH(l−1)Wl + bl

)︁
. (2.6)
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The pre-multiplication of the graph structure acts as a filtering method to

use the fact that connected nodes should be similar in representation for

downstream tasks. It is common to replace the adjacency matrix A with the

graph laplacian L = D−1/2AD−1/2 where Dii = ∑j Aij as a normalized filter.

We will use these formulations in the models presented later in this thesis.

2.4.4 Recurrent neural networks

We have discussed the ANN, CNN, and GCN, which all are powerful tools for

extracting useful information from data that assume a independent identically

distributed (IID) nature with no sequential relationship. However, there exist

many data structures that do have dependency in a sequential manner, such

as time series data from fMRI or stock market data. Recurrent neural networks

(RNNs) are deep learning architectures that are capable of processing sequen-

tial data. While an ANN can only map input to output vectors, an RNN can

map from the entire history of inputs to an output [95]. Furthermore, it has

been shown that RNNs can learn universally arbitrary mappings from input

to output sequences [96].

A commonly used RNN known as the Long Short Term Memory (LSTM)

network processes sequential data and has been widely used in the fields of

rs-fMRI analysis [97], speech [98], and stock market analysis [99]. The LSTM

network has input, output, and forget gates alongside a cell state which tracks

information throughout the entire network [100]. Let xt be the input data at

time t, ht−1 be the previous hidden state, ct−1 be the previous cell state. Let it,

ft, and ot be the input, forget, and output values, which are parameterized by
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the weights Wi, Ui, W f , U f , Wo, Uo, each with bias bi, b f , bo. Let Wc, bc be the

weights for the cell gate, and let σ() be the sigmoid function. The governing

equations for the LSTM are

ft = σ(W f xt + U f ht−1 + b f )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

c′t = tanh(Wcxt + Ucht−1 + bc)

ct = ftct−1 + itc′t

ht = ottanh(ct).

(2.7)

We can see that the input and forget values determine how much of the

last time point’s cell state we keep. The cell state gets passed through the

hyperbolic tangent activation function and then multiplied by the output

value to get the new hidden state ht. The LSTM alleviates vanishing gradient

issues by propagating ct throughout the network. However, the LSTM still

does suffer from very long-term dependencies in the input sequence.

2.4.5 Attention networks in DL

Attention models have gained popularity in deep learning as a way to improve

sequence modelling for various tasks, allowing for modelling of dependen-

cies without regard to their distance or magnitude in the input or output

sequences [101]. Attention networks have contributed to impressive results in
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neural machine translation [102], image captioning [103], and speech recog-

nition [104]. A standard neural network consists of a series of non-linear

transformation layers, where each layer outputs a fixed-dimensional hidden

representation. An attention network maintains a set of hidden representa-

tions that scale with the size of the input / source signal.

Formally, let x = [x1, · · · , xn] represent a sequence of inputs, let q be a

query, and z be a categorical latent random variable with space {1, · · · , n}.

Our goal is to produce a refined context c based on x, q. We define the attention

distribution as z ∼ p(z|x, q) where the context c over a sequence x is defined

as

c = Ez∼p(z|x,q)[ f (x, z)] (2.8)

where f (x, z) is an annotation function. The vanilla attention distribution p

is simply p(z = i|x, q) = Softmax(θi), where θi is a parameterization which

is typically from a neural network, i.e. θi = MLP([xi; q]. The context is then

computed with the simple sum

c = Ez∼p(z|x,q)[ f (x, z)] =
N

∑
i=1

p(z = i|x, q)xi (2.9)

We will leverage the principles of attention networks to improve our

localization throughout the models presented in this thesis. We will focus on

attention that works on the temporal scale as well as spatial scale.

2.4.6 Transformer networks

One issue with the LSTM is increased training times depending on the length

of the sequence. The last network we will discuss is the transformer network,
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which has recently been developed as a model that can encode sequential

relationships with just a cascade of feedforward networks [101]. Therefore,

transformers are less computationally complex during forward and backward

propagation than the LSTM model. The transformer processes an entire

sequence (for example, a sentence) at once as opposed to the LSTM (which

processes word by word). Therefore, the transformer does not suffer from

long-term dependencies in the same way the LSTM does.

There have been many published works using the transformer network.

ChatGPT has emerged as a powerful NLP tool that is capable of auto-completing

sentences, writing paragraphs, and even code [105]. The image transformer

uses transformers to generate images or perform image in painting [106]. The

work in [107] shows a graph transformer network applied to rs-fMRI data to

improve Alzheimer’s Disease.

The key behind the transformer’s success is the use of multi-headed self-

attention (MHA) mechanisms. Scaled dot-product attention computes weights

between a set of queries Q and keys K. To obtain attention, a softmax operation

is used such that they sum to 1 and multiplied with a set of values V. The

attention equation is as follows

Attn(Q, K, V) = Softmax

(︄
QKT
√

d

)︄
V (2.10)

where d is the dimension of K. The outer product QKT represents the similarity,

and therefore the output of an attention layer is a linear combination of V.

Multi-headed attention extends the attention layer to h different heads. For

each head i, Q , K, and V are multiplied by learnable weight matrices WQ
i , WK

i ,
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and WV
i . So headi = Attn(QWQ

i , KWK
i , VWV

i ). Then, a final weight matrix

WO is computed to combine the individual heads.

MultiHead(Q, K, V) = Concatenate(head1, · · · , headh)WO (2.11)

The overall architecture of the transformer uses an encoder-decoder struc-

ture alongside MHA and feedforward (FF) networks. The encoder layers

have sublayers that use residual connections followed by a MHA layer and

FF network. The decoder follows a similar structure but adds an intermediate

sub-layer that compares the output to the encoder output. Let X be the input,

and FF denote feedforward network, the encoder formulation is as follows

o = FF
(︃

MHA(X) + X
)︃
+ MHA(X) + X (2.12)

where we can see the residual connections alongside FF networks. We will use

the encoder part of the transformer to process dynamic functional connectivity

data later in this thesis.

2.4.7 Optimization and training

Developing robust and accurate optimization techniques for deep networks

is a challenging sub-field within the literature. Back propagation is the stan-

dard for training neural networks, as the gradients of the parameters can be

computed and updated in one backward pass of the network [108]. Gradient

descent was the first optimization technique used, which evolved into using

stochastic gradient descent (gradient descent using minibatches of the data)
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to ease training and prevent overfitting [109]. The de-facto standard for op-

timizer choice is to use the Adam optimization algorithm, which uses first

and second order gradients alongside correction terms during backpropaga-

tion [110]. Other hyperparameters involved in training deep networks include

the learning rate, number of epochs (or time steps) to perform training for,

and batch size.

Many regularization techniques have been proposed to improve training,

prevent overfitting to a training set, and improve efficiency of deep networks.

For example, dropout is a method where a random subset of nodes are not

considered during backpropagation per epoch [111]. Hyperparameter tuning

is a commonly faced problem in deep learning optimization. It is common

to use a separate validation set of the data (separate from train or test) to

tune the hyperparameters to prevent overfitting. With increasing numbers

of parameters, one issue deep networks have is lack of sufficient training

data to learn from. The use of data augmentation techniques to provide a

richer, more comprehensive set of training data is a large sub-field within

deep learning [112]. We will make use of data augmentation techniques in

this thesis to improve the generalization power of the networks presented.

2.4.7.1 Loss functions

The network first calculates a loss during the forward pass before backprop-

agation occurs during gradient updates. The choice of loss function will be

essential in how the overall network learns from the data. The network engi-

neer will have many options for loss functions for networks that perform the
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same task. For example, regression tasks can use either the mean square error

(MSE) or the mean absolute error (MAE) loss function. The dice loss function

is commonly used for medical image segmentation tasks [113]. The cross

entropy loss function is the de-facto standard for classification tasks [114].

However, some classification tasks might have a large class imbalance, such

as localization tasks [36], for which the network might not identify the class of

interest while just assigning every prediction to the larger class. One technique

to mitigate this is to use a weighted cross-entropy term, or the recently devel-

oped focal loss, which weights predictions different based on class size [115].

One can regularize deep networks, or encourage a desired property to be

learned, by adding terms to the loss function. For example, one can add an

L-2 penalty on the weights to encourage stability during training [116]. In this

thesis, we will present novel loss functions which capture biological nuances

in the problems that we are trying to solve.

2.4.8 Deep learning for rs-fMRI analysis

With its capacity for generalization and learning, deep learning has recently

dominated the field of rs-fMRI analysis, especially due to data-sharing and

larger publicly available neuroimaging datasets. To date, nearly all types of

deep learning architectures have been used in rs-fMRI analysis [117]. Here

we will go over a brief review of how each different network (ANN, CNN,

GCN, LSTM, transformer) has been applied to rs-fMRI for certain application

domains.

The work in [118] uses fully-connected ANN layers to learn mappings
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from rs-fMRI connectivity to ASD labels. Their network uses a simple 3

layer ANN to map whole-brain rs-fMRI correlation values to disease label.

Similarly, the work in [119] employs weight sparsity alongside ANNs to

classify Schizophrenic patients from healthy controls. Their network includes

an autoencoder (deep network which reconstructs its input) comprised of

only fully-connected layers.

CNNs have shown promising results for rs-fMRI analysis, due to the spa-

tially continuous features present in neuroimaging data. The work of [120]

uses 3D CNNs alongside ensemble prediction with a stochastic parcellation

scheme (data augmentation) to improve upon ASD vs healthy classification

and age prediction. Combining relevant machine learning techniques along-

side CNNs have been explored for rs-fMRI connectivity analysis as well. The

work in [121] used a modified version of VGGnet (3DCNNs) and ICA de-

rived features to perform schizophrenia vs healthy classification. The work

we present on eloquent cortex localization will build off a base CNN model

applied to connectivity graphs.

Since using connectivity features summarized in the form of a connectivity

graph is the de-facto standard for rs-fMRI connectivity analysis, it is natural

to use a graph convolution network for feature extraction and downstream

task analysis. The work in [122] uses the K-nearest neighbor algorithm on

the FC data to define a graph structure and is combined with a recurrent

network structure to identify ASD vs. controls. The work in [123] develops

a spatio-temporal graph convolution operation, which operates on spatio-

temporal neighborhoods within the graph, taking the entire 4D structure of
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the rs-fMRI into account. They validate their method on identifying sex and

age differences in the HCP and NCANDA cohort. The work we present on

EZ localization will involve graph convolutional networks.

As a 4D modality that contains time-series data, rs-fMRI is a natural can-

didate for sequential neural networks such as the LSTM or the transformer

network. The work from [97] is one of the first networks to use an LSTM

in processing rs-fMRI data, where the authors use the time series data as an

input to the LSTM followed by mean pooling from each time step’s prediction

to classify ASD vs controls. The work in [124] leverages both spatial and

temporal properites in rs-fMRI by using 3DCNNs and an LSTM network to

perform ASD vs controls classification. The work in [125] uses pre-training

techniques with transformer networks for brain network classification. Their

method uses the encoder part of a transformer applied to connectivity features

alongside an ANN for classification. We will discuss how both LSTM and

transformer networks can be used as a temporal attention mechanism for

dynamic connectivity analysis later in this thesis.

2.5 Datasets

In this section, we will report the datasets that we used for our experiments

in this thesis. For each dataset, we will discuss the modalities present, the

number of subjects, acquisition protocols, and preprocessing. It is important

to note that different works in this thesis may use different subsets of the data

that we have access to, due to different subjects having different modalities

present and updates to the publicly available dataset used. We will present the
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datasets in the order in which we will discuss them in the thesis, starting with

the datasets we used for our parcellation refinement validation, following

with the eloquent cortex work, the EZ localization work, and then ending

with the publicly available human connectome project (HCP) dataset and how

we derived various augmented datasets from HCP for certain experiments

and training procedures.

2.5.1 ABIDE II

One of the datasets we use to validate our parcellation refinement model is

the Autism Brain Imaging Data Exchange (ABIDE) II dataset. The dataset

contains 233 subjects (131 ASD, 102 NC) from the Autism Brain Imaging Data

Exchange (ABIDE) II dataset [126]. The rs-fMRI data was acquired across six

different sites and preprocessed using the Configurable Pipeline for Analysis

of Connectomes (CPAC) toolbox [127]. More processing details on ABIDE II

can be found in [126].

2.5.2 JHH brain tumor dataset

Our tumor cohort consists of 62 patients who underwent presurgical fMRI

at the Johns Hopkins Hospital (JHH). The data was obtained using a 3.0 T

Siemens Trio Tim system. Structural images were acquired via an MPRAGE

sequence (TR = 2300 ms, TI = 900 ms, TE = 3.5 ms, flip angle = 9◦, FOV = 24

cm, acquisition matrix = 256 × 256 × 176, slice thickness = 1 mm). Functional

BOLD images were acquired using 2D gradient echo-planar imaging (TR =

2000 ms, TE = 30 ms, flip angle = 9◦, FOV = 24 cm, acquisition matrix = 64 ×
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Figure 2.4: Structural T1 MRI of four separate tumor subjects with tumor outlined in
red.

64 × 33, slice thickness = 4 mm, slice gap = 1 mm, interleaved acquisition).

A more detailed description of the participants, the task paradigms, and

acquisition protocol can be found in [33].

The models present in this thesis make use of rs-fMRI, structural MRI,

and t-fMRI of brain tumor patients. The structural MRI was used for manual

tumor segmentation via the MIPAV package [128]. The segmentations were

performed by a medical fellow and confirmed with an expert neuroradiol-

ogist. Fig. 2.4 illustrates structural the T1 MRI of four patients to motivate

the heterogeniety in tumor size and location. T-fMRI data was acquired for

all patients as part of the presurgical workup. In this work, t-fMRI is used

to derive the ground truth eloquent class labels using the General Linear

Model (GLM) implemented in SPM-8 [129]. The resulting activation maps

were manually thresholded on a patient-specific basis and confirmed by an

expert neuroradiologist. The t-fMRI is only used during the training phase of

the model. Three motor task paradigms (finger tapping, tongue moving, foot

tapping) were used to target specific locations of the motor homonculus [130].

Fig. 2.5 (L) shows the various sub-networks of interest for a single patient.

Likewise, two language paradigms, sentence completion (SC) and silent word
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Figure 2.5: L: The tongue, finger, and foot sub-networks for one patient. R: The
language network for three separate patients. The language network boundaries are
very variable from patient to patient.

generation (SWG), were performed. These language tasks are designed to tar-

get both primary and secondary regions in the brain responsible for language

generation [131, 132]. For each patient, instructions and practice sessions

were provided. During acquisition, real-time fMRI maps for each task were

monitored by the neuroradiologist to assess for global data quality; any task

performance deemed suboptimal due to motion-related or other artifact was

repeated. Since the t-fMRI was acquired as part of routine clinical care, not

all patients performed each task. Finally, our cohort has 57 patients with

left-hemisphere language networks and 5 patients with bilateral language

networks. Fig. 2.5 (R) illustrates the high anatomical variability in language

regions, especially due to tumor presence.

Rs-fMRI was acquired while subjects were awake but passive in the scanner.

The rs-fMRI data was preprocessed using SPM-8. The steps include slice

timing correction, motion correction and registration to the MNI-152 template.

The data was linearly detrended and physiological nuisance regression was

performed using the CompCorr method [133]. The data was bandpass filtered

from 0.01 to 0.1 Hz, and spatially smoothed with a 6 mm FWHM Gaussian

kernel. Finally, images found to exceed the default noise threshold by the

ArtRepair toolbox [134] were removed (scrubbed) from the rs-fMRI volumes.
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Table 2.1: Patient, tumor and t-fMRI information for the JHH cohort.

Age 38± 6.3
Sex (M,F) 37, 25
Tumor location
(lobe)

Hemisphere

Frontal 21 Left 35
Parietal 18 Right 20
Temporal 17 Both 7
Occipital 6
Volume
(x1000)mm3

WHO grade

<35 21 1 14
35-70 28 2 27
70-100 8 3 13
>100 5 4 8
Task protocol Subjects
Language 62
Finger 38
Tongue 41
Foot 18

Confounders such as tumor size and handedness are intrinsically tied

within the models presented in this thesis, as handedness relates to laterality

of language (e.g., we have 57 unilateral and 5 bilateral language subjects), and

the tumor is explicitly modelled within our similarity graph. Table 2.1 presents

information for the JHH cohort, where we report the number of patients that

performed each task, the tumor grade and size, and demographics.

2.5.3 UW pediatric focal epilepsy dataset

Our EZ dataset consists of preoperative functional and postoperative struc-

tural MRI scans from 14 pediatric subjects with focal epilepsy that underwent

a EZ resection procedure at UW Madison. The MRI data was acquired as a
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Figure 2.6: From (L-R), post resection structural MRI scans of two separate patients.
We use the resection boundary, delineated via the red lines above, to derive pseudo
ground truth labels for the EZ during training and testing.

part of standard care on either a GE 1.5T or a GE 3T Signa scanner. This study

was approved by the University of Wisconsin-Madison Institutional Review

Board under protocol 2019-1265 (approved Feb 2020).

Preoperative Rs-MRI (rs-fMRI) data was acquired using an echo planar

imaging sequence (EPI, TR = 802 ms, TE = 33.5 ms, flip angle = 50◦, FOV

= 20.8 cm, res = 2 mm isotropic). The data was preprocessed using the

CPAC pipeline [127], which includes slice time correction, motion correction,

nuisance signal regression, band-pass filtering (0.01− 0.1Hz), and registration

to the MNI template. For each EZ localization work, we use the Brainnetomme

parcellation [60] to define N = 246 cortical and subcortical regions for our

analysis. We chose this atlas due to its fine spatial resolution and symmetric

region definitions.

Diffusion MRI (d-MRI) was also acquired for each patient and integrated

into one of the baseline algorithms we compare against for evaluation. D-MRI

was collected on a 3T GE scanner (TR= 7000ms, TE= 82.4ms,res= 1.5 mm

isotropic, b-value = 1000).

Postoperative T1-weighted structural images were acquired using a three-

dimensional gradient-echo pulse sequence (MPRAGE, TR = 604 ms, TE
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= 2.516 ms, flip angle = 8◦, FOV = 25.6 cm, res = 0.8 mm isotropic). After

skull stripping, we use affine registration to align the T1 data for each patient to

the MNI space. All registrations were visually inspected for quality assurance.

We manually delineate the resection zone and use this boundary to define

pseudo ground truth EZ labels for training and evaluation after applying

the Brainnetomme atlas. Fig. 2.6 depicts two examples of the post-operative

T1 images, where the resection is marked by red arrows. Finally, Table 2.2

reports the age, gender, EZ location, scanner used to acquire the rs-fMRI

data for each patient and patient outcome using the Engel [135] and ILAE

scale [136]. As seen, our epilepsy cohort is highly heterogeneous and every

patient experienced reduced seizures after surgery, with the majority being

completely seizure free.

2.5.4 The Human Connectome Project

The Human Connectome Project (HCP) is a comprehensive publicly available

dataset that contains a substantial amount of neuroimaging data from hun-

dreds of healthy participants. Rs-fMRI, various language and motor t-fMRI,

and DTI for healthy subjects are all available. We use different subsets of

the HCP dataset for different validation experiments in this thesis. First we

present the HCP dataset used as part of our refinement models validation.

Then we present a synthetic dataset where we simulate fake tumors in healthy

connectomes to provide as an additional eloquent cortex localization dataset.

Then we present a synthetic dataset where we simulate the EZ in healthy con-

nectomes to provide a larger EZ cohort, which we use in the noisy label work

45



Table 2.2: Demographic information, EZ location, and scanner type, and outcome for
each patient in the UW Madison dataset.

Subject Age Location Scanner Outcome
1 14 left anterior and medial pari-

etal
3T Engel IA,

ILAE 1
2 17 left anterior temporal lobe 3T Engel IA,

ILAE 1
3 10 left frontal pole 3T Engel IA,

ILAE 1
4 11 right temporal lobe 3T Engel IA,

ILAE 1
5 15 right anterior

frontal/amygdala
3T Engel IIIA,

ILAE 4
6 11 left inferior frontal opercu-

lum and insula
3T Engel IA,

ILAE 1
7 13 right middle frontal region 3T Engel IIIA,

ILAE 2
8 14 right posterior temporal and

parietal region
1.5T Engel IA,

ILAE 1
9 15 right anterior precentral

gyrus
1.5T Engel IIIA,

ILAE 4
10 18 right temporal 3T Engel IIB ILAE

2
11 9 right middle frontal lobe 1.5T Engel IA,

ILAE 1
12 15 right middle parietal lobe 1.5T Engel IVA,

ILAE 5
13 16 Left inferior frontal 3T Engel IIIA,

ILAE 4
14 11 left inferior frontal gyrus 3T Engel IA,

ILAE 1
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as well. Finally, we discuss how we used DTI data from HCP to construct a

structural connectome graph used for graph convolutions. All preprocessing

details can be found in [137].

2.5.4.1 Fluid intelligence prediction

As part of our parcellation refinement work, we use a subset of HCP for

validation. The dataset contains 300 healthy subjects from the HCP S1200

release [137]. The goal of this portion of the thesis is a regression task to

predict cognitive fluid intelligence scores (CFIS) from rs-fMRI connectivity

data. Standard rs-fMRI preprocessing was done according to [138], which

handles motion, physiological artifacts, and registration to the MNI template.

For simplicity, the CFIS values are scaled between (0 − 10) based on the

training data of each fold.

2.5.4.2 Synthetic tumor dataset

We conduct a proof-of-concept simulation study by applying our method to

100 subjects drawn from the Human Connectome Project (HCP1) dataset [137],

in which we simulate “fake tumors”. We limit the analysis to 100 subjects,

so that the dataset is of comparable size to our JHH cohort. Details on the

acquisition paramters, sequencing, and preprocessing for both rs-fMRI and

t-fMRI can be found in [137].

The language task for HCP was developed in [139] to map the anterior

temporal lobe for presurgical planning. The task consisted of alternating

between story comprehension and performing basic arithmetic operations

(addition, subtraction etc.). In both blocks, the participants received questions
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in the form of text-to-speech, to activate their language processing networks.

For the motor task, participants were instructed to tap their left or right fingers,

squeeze their left or right toes, or move their tongue to map motor areas (block

design [140]). We used the FEAT software from FSL [141] to obtain GLM

activation maps of the HCP t-fMRI.

The “fake tumors” overlayed onto the HCP1 connectomes are randomly

created, and ensured to be spatially continuous, akin to a real tumor. We

include this augmented dataset to simulate various issues the tumor intro-

duces to our classification task and ultimately show robustness of our method.

Our motivation for including the HCP simulation study is to evaluate our

MT-GNN performance on real-world data with similar characteristics (i.e.,

resting-state functional connectivity inputs and labels derived from t-fMRI).

Though we cannot model neural reorganization due to the tumor, our HCP

simulation study provides a baseline of how removing functionality from

these regions affects the overall performance.

Finally, we have downloaded a second dataset of HCP subjects (HCP2) to

use solely for hyperparameter tuning of our model and baseline approaches.

Once tuned, these hyperparameters are fixed for all experiments. This second

HCP dataset ensures that there is no bias from our hyperparameter selection

that enters the training and testing procedures for the JHH and HCP1 datasets.

2.5.4.3 Synthetic focal epilepsy dataset

It is well understood that augmenting the dataset during training can improve

the generalizability and test performance of a deep learning model [112].
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Furthermore, rs-fMRI studies of focal epilepsy patients are often limited in

size. Therefore, following [142], we develop an EZ localization model trained

entirely on augmented data derived from a neurotypical control dataset. Fol-

lowing the procedure outlined in [142], we create an augmented dataset from

HCP for the EZ localization work.

Our dataset consists of 300 HCP subjects [137]. We generate training three

samples per subject (S = 900 total) by varying the EZ location and/or noise

model used for data augmentation. For each training sample, we augment

the healthy rs-fMRI data by first randomly selecting a spatially continuous

neighborhood of voxels to form the EZ and then modifying the time series

at those voxels via one of six noise models: (1) adding normally distributed

noise, (2) adding uniformly distributed noise, (3) adding power-law noise,

(4) adding Brownian noise, (5) adding noise generated by a Levy walk process,

and (6) randomly permuting the time series. Since there is no established

ground truth for how the EZ affects rs-fMRI, the combination of these six

noise models exposes our network to a broad range of data abnormalities

during training [142]. We use this dataset for EZ localization and the noisy

label experiments as well, as we have control over the ground truth labels and

noise signals in the data.

2.5.4.4 Structural connectivity template from DTI

Similar to obtaining a functional connectivity graph using rs-fMRI and a

parcellation, one can obtain a structural connectivity graph using a DTI fiber

tracking algorithm with a parcellation as well. In our EZ localization work,
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we use the structural connectivity of a healthy template to guide our graph

convolutions. We derive the graph from d-MRI tractography of 50 subjects

from the Human Connectome Project (HCP) dataset [137]. The d-MRI data for

each subject was preprocessed using the pipeline of [143] to obtain individual

structural connectivity matrices based on the Brainnetome atlas. The steps of

the pipeline include linear registration, tensor estimation, tractography, and

graph estimation. The graphs are then averaged and thresholded to obtain

the template matrix.

2.6 Summary

To summarize, we discussed different neuroimaging modalities, specifically

fMRI, and how they are used to make inference about the brain. We discussed

different connectivity methods used for rs-fMRI analysis. We introduced

parcellation construction methods and discussed how group-level and subject-

specific approaches may not be ideal for analysis of neuroatypical cohorts. We

then introduced the notion of parcellation refinement techniques, which will

be topic of the next part of this thesis.

We went over prior non-deep learning based methods for functional con-

nectivity analysis and potential pitfalls to applying these methods for our

problems of eloquent cortex localization in tumor patients and EZ localization

in focal epilepsy patients. We discussed a preliminary overview of deep learn-

ing techniques, and went over common network architectures that this thesis

will build off of. Chapter 2 concludes with a summary of each of the datasets

that will be used in this thesis for validation, which include both in-house
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collected and publicly available datasets.
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Chapter 3

Parcellation refinement techniques

3.1 Introduction

While group-level parcellation construction techniques are the de-facto stan-

dard for rs-fMRI preprocessing during analysis pipelines, they may not gen-

eralize well to neuroatypical subjects, because they are usually derived on

healthy subjects’ data. Subject specific parcellation approaches, on the other

hand, are unable to reliably draw group-level concordances, and are usu-

ally validated using test-retest metrics, which do not provide clinical use.

Parcellation refinement techniques have emerged as an alternative to obtain

subject-specific parcellations that have a group-level correspondance for anal-

ysis. In this section of the thesis, we will first summarize / present the work

we published in the Connectomics in NeuroImaging (CNI) 2018 workshop as

a part of the Medical Image Computing and Computer Assisted Intervention

(MICCAI) conference [34]. Then we will present a neural-network inspired

refinement module, RefineNet, which we published in the MICCAI 2022 main

conference [35].
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3.1.1 Contributions

Prior work in this field includes the method developed in [65], which uses

the Pearson’s correlation between voxel and mean time series and does not

consider spatial continuity in reassignment, while needing the user to specify

various parameters. We develop a Bayesian model that uses both spatial

and temporal information to iteratively refine an initial functional parcella-

tion on a patient-specific basis. Our model uses a Markov Random Field

(MRF) prior to encourage spatial contiguity within the functional parcels. We

employ a maximum a posteriori (MAP) inference strategy for voxel-wise net-

work assignment until a predefined convergence criteria is met. Our method

builds on prior work in Bayesian network modeling [144] and MRF priors

for rs-fMRI data [145]. We validate our method on rs-fMRI data from 67

tumor patients from the JHH dataset. Our initial atlas is the Yeo 17 network

functional parcellation [61], which is one of the most widely cited functional

atlases in the literature. We compare the performance of our method with the

original parcellation (no reassignment) and with reassignment according to

[65], whose paper references the same parcellation. Our validation metrics

include the intra-network cohesion amongst the final parcels and motor net-

work identification via task based fMRI concordance using three distinct task

paradigms.

While traditional rs-fMRI analysis pipelines (classification, regression, etc)

begin with applying a parcellation, there does not exist a refinement method

that incorporates the downstream task performance in its refinement scheme.

Our next work we will present is called RefineNet, the first deep learning

53



approach for subject-specific and task-aware parcellation refinement using

rs-fMRI data. RefineNet encodes both spatial and temporal information via

a weight matrix that learns relationships between neighboring voxels and

a coherence module that compares the voxel- and region-level time series.

Importantly, RefineNet is designed as an all-purpose module that can be at-

tached to existing neural networks to optimize task performance. We validate

RefineNet on rs-fMRI data from three different datasets, each one designed to

perform a different task: (1) cognitive fluid intelligence prediction (regression)

on HCP [137], (2) autism spectrum disorder (ASD) versus neurotypical control

(NC) classification on ABIDE [126], and (3) language localization using an

rs-fMRI dataset of brain tumor patients. In each case, we attach RefineNet

to an existing deep network from the literature designed for the given task.

Overall, RefineNet improves the temporal cohesion of the learned region

boundaries and the downstream task performance.

3.2 A Bayesian Model for parcellation refinement
using Markov Random Fields

3.2.1 Model

3.2.1.1 Prior and likelihood models

Our model infers an underlying (i.e latent) network architecture that integrates

both spatial contiguity and temporal synchrony across the brain. At each voxel,

we leverage the time series data, the neighborhood network membership, and

a binary tumor label, indicating if the voxel lies within the lesion or not.

Let Xv be the network assignment for voxel v. In our framework, Xv gets
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Figure 3.1: A graphical model of our framework where shaded nodes represent
observed random variables.

assigned to one of K + 1 values, where K is the number of networks (or region

parcels) defined in the initial atlas. An assignment of Xv = 0 indicates no

network membership for voxel v if it belongs to the glioma. Mathematically,

let X−v be the current network assignments of all other voxels in the brain.

Likewise, yv is the time series data at voxel v, µk is the current reference

signal for network k ∈
{︁

1 . . . K
}︁

, and bv ∈
{︁

0, 1
}︁

is the binary tumor label

such that bv = 0 implies that voxel v is tumorous. Our setup is illustrated

in Fig. 3.1. As seen, the assignment for Xv depends on its immediate spatial

neighbors. The relationship between Xv and X−v is captured by an MRF

prior while the relationship between Xv and yv, bv is captured by the data

likelihood. For visualization purposes the 2D representation in Fig. 3.1 shows

four neighbors per pixel. However, we have implemented a 3D model, which

has six neighbors per voxel.
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We encourage spatial contiguity in our latent network assignments by stip-

ulating that voxel v will be more likely to assume the state of its neighboring

voxels. We model the MRF prior after the Potts model [146]:

P(Xv = k|X−v) =
1

Zx
Ψ(Xv, X−v, k) ∝

⎧⎨⎩1 + exp

⎡⎣−(β + ∑
i∈ne(v)

1Xi=k)

⎤⎦⎫⎬⎭
−1

(3.1)

where β controls the influence of the neighbor voxel network memberships

on voxel v. Here, ne(v) denotes the neighbors of voxel v, and the sum

∑i∈ne(v) 1Xi=k captures how often these neighbors are assigned to network k.

Notice that this sum will be zero for network k when Xi ̸= k for all i ∈ ne(v).

The likelihood P(yv|Xv = k; µk, bv) is modeled after a rescaled version of

the Pearson correlation coefficient between the reference µk and data yv:

ρ =
cov(yv, µk)

σyv
σµk

(3.2)

where ρ is subsequently shifted and scaled to be between [0, 1] to allow for a

normalizable density. The final likelihood model is given by

P(yv|Xv = k; µk, bv) =
1

Zy
Ψ(yv, µk, bv) =

1
Zy

{︄
(ρyv,µk

+ 1)
2

× bv

}︄
. (3.3)

The rescaled Pearson correlation coefficient goes to one for strong positive

correlations and zero for strong negative correlations. The label bv sets the

likelihood to zero for tumorous voxels, which corresponds to no network

membership.
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3.2.1.2 Approximate inference and implementation details

The observed rs-fMRI time series yv are conditionally independent given {Xv}.

Based on the model factorization, our posterior distribution can be written as

P(Xv = k|X−v, yv; θ) =
1
Z

Ψ(Xv, X−v, k)Ψ(yv, µk, bv) (3.4)

where Ψ(Xv, X−v, k) models the prior, Ψ(yv, µk, bv) models the likelihood

under the belief that Xv = k, and Z is a normalization constant that combines

both Zx and Zy. We have derived an update procedure based on maximizing

the following log-posterior over all possible network assignments:

X∗v = argmax
k

{︂
− log Z + log Ψ(Xv, X−v, k) + log Ψ(yv, µk, bv)

}︂
. (3.5)

We have derived an algorithm based on max product message passing to

ensure atlas stability [147]. Our algorithm iterates between two main steps:

updating the network assignments {Xv} and updating the reference signals

{µk}. Let Y ∈ Rx×y×z×T be the aggregated rs-fMRI data across all (x, y, z)

spatial coordinates and let X(t) ∈ Rx×y×z be the assignment information at

iteration t. Let B ∈ Rx×y×z be the binary tumor matrix. The values stored

in B are 0 at tumorous voxels and 1 elsewhere. We initialize our algorithm

with the Yeo atlas and then the Hadamard product X(0) = X ⊙ B, which

defaults all tumorous voxel assignments to 0 due to unreliable signal at these

locations. We then parcellate Y by the assignments in X(0) and calculate the

initial reference signals µ
(0)
k for k ∈

{︁
1 . . . K

}︁
with

µ
(t)
k =

∑V
v=1 Yv · 1(X(t)

v = k)

∑V
v=1 1(X(t)

v = k)
. (3.6)
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At each main iteration t, we determine the voxel assignments I times

according to our MAP rule in Eq. 3.5 initializing with X(t−1). Using the assign-

ments in i− 1, we employ a flooding schedule to simultaneously determine

the network values ˆ︁X(i)
at iteration i. The updated assignments X(t) is given

by majority vote over the determined network values {ˆ︁X(i)}I
i=1. Given the

new assignments, we update the network signals by Eq. 3.6 for k ∈
{︁

1 . . . K
}︁

and check if the convergence criteria has been met by calculating the frac-

tion of non-zero assigned voxels retaining the same network membership

between iterations t− 1 and t. If the membership consistency between itera-

tions is less than a specified stopping criteria, we repeat the procedure. Each

voxel of interest has six neighbors as determined by adjacency in each of the

three coordinate directions. Algorithm 1 presents our pseudo-code where the

subject-specifc inputs are B and Y .

[t!] [1] MRFrefinementX, B, Y X(0) ← X ⊙ B
{︁

µ
(0)
1 · · · µ

(0)
K
}︁
← Y , X(0)

Eq.(3.6) t ← 1 M(0) ← 0 Membership retention M ∈ [0, 1] M < c Con-

vergence threshold c ∈ [0, 1] ˆ︁X(1) ← X(t−1) i = 2 : I v ∈ V ˆ︁X(i)
v ←

argmaxk

{︂
log Ψ(Xv, ˆ︁X(i−1)

−v , k) + log Ψ(yv, µ
(t−1)
k , bv)

}︂
X(t) ← mode({ˆ︁X(i)}I

i=1){︁
µ
(t)
1 · · · µ

(t)
K
}︁
← Y , X(t) Eq.(3.6) M← ∑v 1(X (t−1)

v =X (t)
v )·Bv

∑v Bv
Fraction of retained

voxel memberships t← t + 1 return X t

3.2.2 Experimental results

3.2.2.1 Baseline comparisons and data

We compare our Bayesian approach with the original parcellation and with

the voxel reassignment method described by Liu et al. [65]. We use the Yeo 17
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network atlas due to its strong reproducibility and the large sample size used

for construction. We confine our experiments to the more conservative cortical

ribbon version of the Yeo atlas to get a more detailed parcellation. The method

of Liu initializes the reference signals to the average time series defined by

the original parcellation. From here, Liu reassigns voxel v by considering the

maximum correlation between its time series and all K reference signals. A

confidence value for each voxel is also computed as the ratio of the maximum

correlation over the second highest correlation. The reference signal updates

are only taken from voxels that have confidence values which exceed a pre-

determined threshold. They are computed as weighted combinations of the

previous iteration’s reference signals with the updated reference signals. The

corresponding weights are nonlinear functions of the signal-to-noise ratio, the

inter-subject variability, and the iteration number. We applied the Liu baseline

with the parameter suggestions provided in [65], which were optimized for

the 17 network Yeo atlas.

Our dataset includes task and rs-fMRI for 67 glioma patients who under-

went preoperative mapping as part of their clinical workup. The preprocess-

ing details are described in chapter 2. Our dataset includes three different

motor paradigms that were designed to target distinct parts of the motor

homonculus [130]: finger tapping, tongue moving, and foot tapping. Since

the task-fMRI data was acquired for clinical purposes, only 42 patients per-

formed the finger task, 35 patients performed the tongue task, and 20 patients

performed the foot task. The population-based atlas contains 17 distinct func-

tional networks confined to the cortical ribbon [61]. For both methods, a
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network retention convergence criteria of 0.98 was used. We chose β = −0.5

and I = 100 iterations for our model and a confidence value of 1.5 for the

Liu baseline. Different combinations of reference signal calculation between

updates for both our method and the Liu baseline were explored; we have

reported the optimal results in each case.

3.2.2.2 Evaluating Resting State Network Cohesion

Our intra-network cohesion metric quantifies the temporal synchrony between

voxels that belong to the same network [148]. Let Vk be the voxels assigned to

network k, we define the Network Cohesion (NC) as the average correlation

between voxels assigned to network k with the network signal µk.

NCk =
∑j∈Vk

ρyj,µk

|Vk|
(3.7)

Fig. 3.2 illustrates the difference in NC between our proposed method and

both the original parcellation (left) and the Liu baseline (right). A value

greater than zero is considered to be more temporally synchronous while

a value less than zero is considered to be less temporally synchronous. In

all 17 networks, our method outperforms the original atlas with significance

p < 0.005. This highlights the importance of our subject-specific approach for

glioma patients, whose functional networks are substantially reorganized due

to tumor presence.

Naturally, the Liu baseline achieves higher NC due to its correlation-based

voxel reassignment procedure. Fig. 3.3 shows the original parcellation, and

the final network assignment using our method and Liu’s method in a single
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Figure 3.2: Difference in intra-network cohesion between our method and the original
parcellation (left) and the Liu baseline (right).

Figure 3.3: Left: Original network assignment. Middle: Our final network assign-
ment. Right: Liu’s final network assignment. For visualization, we have dilated the
networks according to the liberal Yeo mask.

patient. Each distinct color represents one of the 17 networks. We observe

an overall lack of spatial contiguity in the Liu baseline, as highlighted in the

white circle. This might be due to spurious noise within rs-fMRI signal at the

voxel level, resulting in some spatially discontiguous reassignment. The large

grey area in the right hemisphere is the excluded tumorous region for this

subject.

Fig. 3.4 shows the proportion of voxels retained in the original network

membership between our method (left) and the Liu baseline (right). We
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Figure 3.4: Network retention for our method (left) and Liu’s method (right).

observe substantial reorganization in the networks defined from our method.

Along with higher NC, this further motivates our approach, showing that

many voxels in the original parcellation may not belong to the proper RSN for

this cohort. We observe an even larger reorganization in the Liu networks. In

the following section we conjecture that the displacement in the Liu networks

may be too large, because while the Liu baseline provides more temporally

cohesive RSNs, it fails to identify functionally consistent motor networks.

3.2.2.3 Motor Network Concordance, as Validated by Task-fMRI

Our second experiment quantifies the rs-fMRI concordance betweeen the

pseudo-ground truth motor network in each patient and the motor RSN iden-

tified by each of the methods. Specifically, we will use the GLM activation

map across three distinct motor tasks to define seed locations for motor func-

tionality. The seed is defined as a group of highly activated voxels within

the activation map. The Yeo atlas separates the motor network into two dif-

ferent parcels [61]. Our measure of task concordance will be the maximum

correlation between the reference signals of these two RSNs and the average

time series associated with the GLM activation seed. We determine that a
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Figure 3.5: Difference in task concordance between our method and both the original
atlas (pink) and the Liu baseline (blue). Our method achieves significantly better
performance in five out of the six comparisons.

Table 3.1: P-values for our method vs. the original atlas and the Liu baseline.

Task Sample size Ours vs. Original Ours vs. Liu
Finger 42 3.6e-3 1.2e-5
Tongue 35 7.0e-3 3.7e-2

Foot 20 0.45 9.8e-5

method is better at motor network identification by having a higher positive

correlation with significance p < 0.05.

Fig. 3.5 illustrates the performance gain of our method. The pink boxplots

show the difference in task concordance between our method and the original

atlas, while the blue shows the difference in task concordance between our

method and the Liu baseline. The tasks are ordered as finger, tongue, and

foot from left to right. Table 3.1 summarizes the results and corresponding

p-values for this experiment. The values in bold show when our method

outperforms other methods with a student t-test with significance threshold

α = 0.05.

Our method outperforms the Liu method in each of the three tasks. In

addition, our method performs better than the original atlas in the finger and
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tongue task, but not the foot task. This latter result can be due to the local

area of the motor homonculus that foot activaton lies in [130] or the smaller

sample size. By observing p-values reported for the finger and foot task, we

conclude that no reassignment would be preferrable to the Liu baseline in

this experiment. However, the Liu method RSNs were the most temporally

cohesive. Though network cohesion is a desirable property for RSNs [148], we

have demonstrated that higher cohesion does not always lead to a functionally

consistent motor network. We conjecture that (1) Liu is too liberal in the voxel

reassignment, and (2) both spatial and temporal consistency are required for

RSN identification.

In summary, our method balances both spatial contiguity with temporal

synchrony to help describe functional networks in patients who have under-

gone localized neural plasticity. We observe that our method shows more

cohesive RSNs for tumor patients than a population-based functional atlas.

We also determine that the motor network refined by our method is a closer

representation to the actual motor network in these patients. This combina-

tion of results give us confidence in our method for characterizing RSNs in a

lesional population. Next, we will present our neural network module for per-

forming parcellation refinement, which can be attached to existing networks

to simultaneously optimize parcellation refinement and a downstream task.
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Figure 3.6: Inputs: rs-fMRI Z, existing parcellation X(0) and neighbor mask M. Top:
We show a six neighbor model for clarity. Our network parameter A learns voxel
neighbor weights. Bottom: The coherence term S uses the pearson correlation coeffi-
cient with each mean time series µp. Right: We obtain intermediate labels ˆ︁X(i) I times
before taking the mode and producing the next epoch’s parcellation X(e), which is
used during backpropagation to obtain A(e).

3.3 RefineNet: a task-aware neural network refine-
ment module

3.3.1 Model

Fig. 3.6 illustrates our RefineNet strategy. The inputs to RefineNet are the

4D rs-fMRI data Z and the original brain parcellation X(0). We formulate a

pseudo-prior, pseudo-likelihood and MAP style inference model to obtain

the refined parcellation X(e). Following this procedure, RefineNet can be

attached to an existing deep network to fine-tune X(e) for downstream task

performance.

65



3.3.1.1 Spatial and Temporal Coherence Terms

Let V be the number of voxels in the rs-fMRI scan, and P be the number of

regions in the original parcellation. We define X ∈ RV×P to RefineNet as a

one-hot encoded label matrix, where Xv,p = 1 when voxel v is assigned to

region p and Xv,p = 0 otherwise. The core assumption of RefineNet is that

voxels in close spatial proximity to each other are likely to belong to the same

region [65, 34]. We encode this information via the intermediate activation

W ∈ RV×P

W = ReLU
(︁
AX
)︁
, (3.8)

where the matrix A ∈ RV×V enforces the local structure of the data. Formally,

we obtain A as the Hadamard product of a sparse binary adjacency matrix

M ∈ RV×V that is nonzero only when the voxels are spatial neighbors and a

learnable weight matrix Â ∈ RV×V to encode spatially varying dependencies.

Fig. 3.6 shows the nonzero weights in Av being multiplied by the current

labels of the neighbors of voxel v, where ne(v) denotes neighbors of voxel v.

At a high level, Eq. 3.8 acts as a proxy for the prior probability that voxel

v belongs to region p based on the contribution of its neighbors currently

assigned to region p, as governed by the spatially varying weights in A.

Thus, our pseudo-prior term is designed to identify which neighbors are

more important for voxel reassignment, which is important for boundary

areas. Note that A is sparse by construction, which reduces both memory and

computational overhead.

It is generally accepted that highly correlated voxels are more likely to be

involved in similar functional processes, and if near each other, should be

66



grouped into the same region [65, 62]. Let Z ∈ RV×T denote the voxel-wise

time series, where T is the duration of rs-fMRI scan. Thus, our pseudo-

likelihood matrix S ∈ RV×P that captures the un-normalized probability of

voxel v being assigned to region p is simply a shifted and scaled version of

the Pearson’s correlation coefficient between the voxel and mean region-wise

time series, i.e., Sv,p =
ρzv ,µp+1

2 .

Mathematically, given the voxel-to-region membership captured in X, we

can compute the region-wise mean time series µp as follows:

µp =
∑V

v Z · Xv,p

∑V
v=1 Xv,p

. (3.9)

The correlation coefficient ρzv,µp can also be obtained via matrix operations,

allowing us to integrate the pseudo-likelihood term directly into a deep net-

work.

3.3.1.2 RefineNet Training and Optimization

We adopt an iterative max product approach to derive our assignment updates.

For convenience, let the index e denote the main epochs and the index i denote

the refinement iterate. For each epoch e, we initialize the intermediate variableˆ︁X(1) with the assignment matrix X(e−1) from the previous iterate and compute

the pseudo-likelihood matrix S(e) via the mean time series defined in Eq. (3.9).

We then iteratively update ˆ︁X(i) based on neighborhood information as follows:

ˆ︁X(i+1)
v,p =

⎧⎪⎨⎪⎩1 argmaxp

{︃
S(e)

v,: ⊙W(i)
v,:

}︃
0 else,

(3.10)
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where W(i) = ReLU
(︁
Aˆ︁X(i))︁ as defined in Eq. (3.8), and the operator ⊙ is the

Hadamard product. The term S(e) remains constant throughout this iterative

process from i = {1 · · · I} to act as the previous stationary point. The refined

parcellation X(e) for epoch e is given by the majority vote over the intermediate

region assignments {ˆ︁X(i)}I
i=1. We employ this iterative approach over the

pseudo-prior term to leverage the space of intermediate label distributions for

a robust re-assignment. We fix I = 20 in this work, as we empirically observed

that this was large enough to provide robust reassignment.

We optimize the weights A in RefineNet via stochastic gradient descent to

maximize the average temporal coherence with the newly assigned regions.

Let Vp be the set of voxels assigned to region p. Our loss for backpropagation

is

LRN = − 1
P

V

∑
v=1

1
|Vp| ∑

v∈Vp

(1 + ρzv,µp)

2
(3.11)

For clarity, our full training procedure is described in Algorithm 2. [t!] [1]

RefineNetX, Z, M,E,I = 20 X(0) ← X A(0) ← Â, M Random initialization of

weights in nonzero entries
{︁

µ
(0)
1 · · · µ

(0)
P
}︁

, S(0) ← Z, X(0) Eq.(3.9) e = 1 : Eˆ︁X(1) ← X(e−1) i = 1 : I W(i) ← A(e−1), ˆ︁X(i) Eq.(3.8) ˆ︁X(i+1) ← S(e−1), W(i)

Eq.(3.10) X(e) ← mode({ˆ︁X}I
i=1)

{︁
µ
(e)
1 · · · µ

(e)
P
}︁

, S(e) ← Z, X(e) Eq.(3.9) LRN ←

X(e),
{︁

µ
(e)
1 · · · µ

(e)
P
}︁

Eq.(3.11) A(e) ← LRN , SGD Backpropagation and gradient

update return X(E)

3.3.1.3 Creating Task-Aware Parcellations with RefineNet

Once pretrained using Eq. (3.11), RefineNet can be attached to existing deep

neural networks and re-optimized for performance on the downstream task.
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Our strategy is to pre-train RefineNet for 50 epochs using a learning rate of

0.001 before jointly training RefineNet with the network of interest. Here, we

alternate between training just the network of interest for task performance

and training both RefineNet and the network of interest in an end-to-end

fashion. Empirically, we observed this strategy provides a good balance of

task-optimization and preserving functional cohesion. Our second-stage loss

function is a weighted sum of the downstream task and the RefineNet loss in

Eq. (3.11):

Ltotal = Lnet + λLRN, (3.12)

where the hyperparameter λ can be chosen via a grid search or cross valida-

tion.

3.3.2 Experimental Results

We validate RefineNet on three different rs-fMRI datasets and prediction

tasks. In each case, we select an existing deep network architecture from the

literature to be combined with RefineNet. These networks take as input a

P× P rs-fMRI correlation matrix. Fig. 3.7 illustrates the combined network

architectures for each prediction task. We implement each network in Pytorch

and use the hyperparameters and training strategy specified in the respective

paper.

Our task-aware optimization alternates between by training the network

of interest for ea epochs while keeping RefineNet (and the input correlation

matrices) fixed. We then jointly train both networks for ea epochs while

refining the parcellation, and thus, the correlation inputs between epochs.
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Figure 3.7: Top: The M-GCN uses a graph convolution network applied to the
connectivity matrix to predict fluid intelligence in HCP subjects. Middle: The AEC
couples an autoencoder and a single layer perceptron to classify ASD vs. NC on
ABIDE data. Bottom: The GNN uses graph convolutions to segment the language
areas of eloquent cortex on a tumor dataset.
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3.3.2.1 Description of Networks and Data

M-GCN for Regression using HCP: We use the M-GCN model (rs-fMRI only)

from [149] to predict the cognitive fluid intelligence score (CFIS). The dataset

contains 300 healthy subjects from the publicly available Human Connectome

Project (HCP) S1200 release [137]. Standard rs-fMRI preprocessing was done

according to [138], which handles motion, physiological artifacts, and registra-

tion to the MNI template. For simplicity, the CFIS values are scaled between

(0− 10) based on the training data of each fold. We report the mean absolute

error (MAE) and correlation coefficient between the predicted and true scores.

AEC for Classification using ABIDE: We use the autoencoder/classifier (AEC)

framework from [150] to predict subject diagnosis. The dataset contains 233

subjects (131 ASD, 102 NC) from the Autism Brain Imaging Data Exchange

(ABIDE) II dataset [126]. Preprocessing details can be found in chapter 2.

As per [150], the AEC network performs ASD vs. NC (neurotypical control)

classification using the upper triangle portion of the rs-fMRI correlation matrix.

We report the accuracy and area under the curve (AUC).

GNN for Language Localization in Tumor Patients: We use the GNN that

we proposed in [36] (in Chapter 4 of this thesis) to localize language areas

of the brain in a lesional cohort. The dataset contains rs-fMRI and task fMRI

data from 60 brain tumor patients. Preprocessing details can be found in

chapter 2. The task fMRI was used to derive “ground-truth" language labels

for training and evaluation [129]. The tumor boundaries were obtained via

expert segmentation.The GNN outputs a label (language, tumor, or neither)
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for each region. We report the overall accuracy and AUC for detecting the

language class.

3.3.2.2 Quantitative Task Performance

We compare three model configurations: (1) no refinement (original), (2)

using just RefineNet to maximize temporal coherence (RefineNet only), and

integrating RefineNet into an auxiliary network, as described in Section 2.3

(combined). We also apply three parcellations to each task: the Brainnetome

atlas (BNA246) [60], the Craddocks 200 atlas (CC200) [59], and the Automated

Anatomical Labelling (AAL90) atlas [21]. To prevent data leakage, we tune the

hyperparameters λ in Eq. (3.12) and alternating training epoch for regression

on 100 additional HCP subjects, yielding λ = 0.2 and ea = 5.

Table 3.2 reports the quantitative performance for each model/atlas con-

figuration. Metrics 1/2 refer to MAE/correlation for the regression task and

AUC/accurary for the classification and localization tasks, respectively. We

employ a ten repeated 10-fold cross validation (CV) evaluation strategy to

quantify performance variability. We report mean± standard deviation for

each metric along with the FDR corrected p-value to indicate statistically

improved performance in Metric 1 over the original model using the same

parcellation [151]. As seen, the combined model provides statistically signifi-

cant performance gains in eight out of nine experiments. In contrast, using

RefineNet alone to strengthen functional coherence does not necessarily im-

prove performance. Thus, our task-aware optimization procedure is crucial

when considering downstream applications. Finally, we note that the AAL90
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Table 3.2: Results across all experiments considered. Metric 1 represents MAE for
regression and AUC for classification and localization while metric 2 represents
correlation for regression and overall accuracy for classification and localization.

Task Model Atlas Metric 1 Metric 2 P-value
CFIS Prediction Original BNA246 2.20± 0.13 0.24± 0.029

CC200 2.24± 0.14 0.27± 0.045
AAL90 2.22± 0.16 0.23± 0.048

RefineNet Only BNA246 2.22± 0.13 0.19± 0.026 0.64
CC200 2.22± 0.18 0.22± 0.036 0.293
AAL90 2.15± 0.14 0.25± 0.032 0.121

Combined BNA246 1.73± 0.14 0.3± 0.039 0.016∗∗

CC200 1.84± 0.12 0.34± 0.046 0.045∗∗

AAL90 1.91± 0.11 0.36± 0.04 0.078∗

ASD vs. NC Original BNA246 0.65± 0.017 65.5± 1.57
CC200 0.66± 0.024 64.9± 2.12
AAL90 0.66± 0.029 64.5± 2.49

RefineNet Only BNA246 0.63± 0.021 63.8± 1.78 0.74
CC200 0.69± 0.016 66.6± 1.80 0.22
AAL90 0.70± 0.021 67.5± 1.94 0.08∗

Combined BNA246 0.69± 0.013 67.8± 1.60 0.062∗

CC200 0.72± 0.029 69.8± 1.76 0.022∗∗

AAL90 0.74± 0.023 71.8± 1.84 0.006∗∗

Localization Original BNA246 0.74± 0.022 84.6± 0.09
CC200 0.75± 0.021 85.9± 0.92
AAL90 0.67± 0.023 82.32± 1.21

RefineNet Only BNA246 0.75± 0.023 84.95± 0.91 0.261
CC200 0.75± 0.018 84.6± 0.71 0.531
AAL90 0.65± 0.021 81.8± 1.34 0.834

Combined BNA246 0.77± 0.021 85.9± 0.91 0.065∗

CC200 0.78± 0.017 86.9± 1.01 0.047∗∗

AAL90 0.68± 0.019 82.63± 1.09 0.312

parcellation is likely too coarse for the language localization task, as reflected

in the drastically lower performance metrics.

3.3.2.3 Parcellation cohesion

Fig. 3.8 illustrates the average temporal cohesion of regions in the final parcel-

lation, as computed on the testing data in each repeated CV fold. Once again,

let ¯p denote the mean time series in each region p. We define the cohesion C
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Figure 3.8: Boxplots for region cohesion across the nine experiments. Yellow refers to
the original model, blue refers to RefineNet only and green refers to combined. (**)
denotes a significant increase from the original to combined parcellation.

as

C =
1
P

V

∑
v=1

1
|Vp| ∑

v∈Vp

ρzv,µp . (3.13)

Unsurprisingly, the parcellations recovered from just using RefineNet (with

no downstream task awareness) achieve the highest cohesion. However, as

shown in Table 3.2, these parcellations are not always suited to the prediction

task. In contrast, the combined model produces more cohesive parcellations

than the original atlas with statistically significant improvement denoted by

(∗∗). Taken together, attaching RefineNet to an existing model achieves a good

balance between functionally-cohesive grouping and task performance.

3.4 Conclusion

In this part of the thesis, we have explored different techniques to capture

the subject-specific differences in rs-fMRI parcellation construction. We have
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formulated a Bayesian model that can refine a population atlas on a patient-

specific basis. Our model considers both spatial contiguity as well as temporal

synchrony between voxels, all while handling large and variable brain lesions.

Our method outperforms established baselines for identifying a functionally

consistent motor network. The use of the MRF prior along with iterative voxel

reassignment shows a viable balance between properties of interest in resulting

RSNs. These methodological improvements broaden the applications in which

one can use rs-fMRI for analysis. We have generated a method that can

be translated to other patient cohorts with anatomical brain lesions, like

stroke, traumatic brain injury, or focal epilepsy. Our performance in assessing

RSN cohesion shows that our method captures subect-specific functional

organization well, even in a pathological population. Our MRF method

outperforms both baselines in terms of motor network identification, which is

an important step for preoperative planning for neurosurgical resections to

avoid permanent motor network damage.

Future work for the MRF method can include using different initial atlases.

Specifically, we aim to observe how our method performs with atlases of

different network numbers, and different initial size (voxel membership)

of networks. Methodologically, we aim to vary the number of neighbors

considered in our prior model, assigning varying weights to neighbors of

different geodisic distances from the center voxel. Clinically, one can use our

MRF model to study reorganization of sites near the glimoa, which is known

to show the most neural plasticity in these patients [152].

We then presented RefineNet, a flexible neural network module capable
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of obtaining meaningful subject-specific and task-aware parcellations. Our

Bayesian-inspired approach considers both spatial contiguity and temporal co-

herence in reassignment. We show significant performance gains across three

different datasets and prediction tasks when RefineNet is appended to exist-

ing networks from the literature. Finally, we show that even the task-driven

refinement procedure produces more functionally cohesive parcellations than

the origial atlas. Our work is a first of its kind, as other parcellation refinement

methods are not able to be jointly trained with existing deep networks for

task-awareness. Now that we have explored the nuances between rs-fMRI

of lesional cohorts, we will extend our work to actually performing localiza-

tion of functional regions of interest in these atypical (brain tumor and focal

epilepsy) cohorts in Chapters 4 and 5.
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Chapter 4

Eloquent cortex localization: static
connectivity analysis

4.1 Introduction

We will present our work and findings on eloquent cortex localization for brain

tumor removal procedures using static connectivity as the input in this chapter

of the thesis. The eloquent cortex consists of sensorimotor and language areas

in the brain that are essential for human functioning. Given its importance,

localizing and subsequently avoiding the eloquent cortex is a crucial step

when planning a neurosurgery. Identifying and subsequently avoiding these

areas during a neurosurgey is crucial for recovery and postoperative quality of

life. Namely, an incision in the eloquent cortex can cause permanent physical

and cognitive damage [153].

The gold standard for mapping the eloquent cortex is invasive electro-

cortical stimulation (ECS) performed during surgery [154]. While ECS is

highly specific, it imposes a significant burden on patients, who must remain

awake and functioning during the procedure. Complications due to ECS
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arise for obese patients, patients with severe dysphasia, patients with severe

respiratory complications, and patients with psychiatric history or emotional

instability [155]. Furthermore, ECS is unavailable at the presurgical planning

stage and is usually not available within the depth of the sulci, which puts

more demands on the neurosurgeon and can increase surgical times [156, 157].

As a result, noninvasive task-fMRI (t-fMRI) has been increasingly popular

for preoperative brain mapping [23, 24]. Namely, high activations in response

to a language or motor paradigm are considered biomarkers of the respective

eloquent areas [18, 33]. While task-fMRI is the most popular noninvasive

mapping modality [158, 159], the activations can be unreliable for certain

populations, like children, the cognitively impaired, or aphasic patients, due

to an inability to follow the task protocol, or excessive head motion [25, 160].

While t-fMRI paradigms must be carefully designed to target a specific

cognitive process, rs-fMRI provides a snapshot of the whole-brain, which can

be used to isolate multiple functional systems [8, 49, 161]. Equally important,

rs-fMRI is a passive modality and does not require the patient to perform

a potentially challenging task for accurate localization. As a result, there is

increasing interest in using rs-fMRI for presurgical mapping to circumvent

the issues of t-fMRI [160, 162].

Prior work includes a variety of statistical and machine learning ap-

proaches to localize the eloquent cortex using fMRI data. Starting with t-fMRI,

the general linear model (GLM) is used to identify voxels with significant

activation [33, 163]. However, this method must be done on a per-patient basis

and requires manual intervention to set the correct activation threshold. A
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more unified approach is presented in ([164, 165]). Here, the authors address

the problem of varying anatomical boundaries through a functional embed-

ding of the t-fMRI data based on diffusion maps and a subsequent Gaussian

mixture model fit to the signal. This method was validated on a language

t-fMRI paradigm in 7 tumor patients. While promising, this method has not

yet been applied to rs-fMRI data.

Deep learning (DL) methods have been increasingly popular in the neu-

roimaging field, and consequently, have shown promise in automatically

identifying the eloquent cortex from rs-fMRI in both healthy subjects and

tumor patients. For examaple, the work of [166] uses a multi-layer percep-

tron to classify seed-based correlation maps into one of seven resting-state

networks. This method first uses PCA for dimensionality reduction followed

by a two hidden layer artifical neural network for classification. Trained

with t-fMRI labels, the model is extended in [160] to perform eloquent cortex

localization in three separate tumor cases. While the results are promising,

once again, the user must select an a priori seed for each network, which can

affect performance. Additionally, it is trained on healthy subjects and may not

accommodate changes in the brain organization due to the lesion. Finally, the

large-scale study in [162] uses the same neural network architecture to identify

eloquent subnetworks in 191 rs-fMRI and 83 t-fMRI scans of tumor patients.

However, a success refers to whether the model identified any clinically relevant

topographies within the scan. The study does not quantify the accuracy at the

voxel or ROI level, which is the metric of interest during presurgical mapping.
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4.1.1 Contributions

In this section of the thesis we will present our first models for eloquent cor-

tex localization, specifically applied to static rs-fMRI connectivity. The work

presented will be from the our CNI MICCAI 2019 paper [34] and our Medical

Image Analysis (MEDIA) journal paper [37]. In contrast to prior work, we

propose the first end-to-end model based on deep neural networks to identify

language areas in brain tumor patients. Our problem loosely resembles image

segmentation, for which deep learning approaches using convolutional neural

networks (CNNs) have made great strides [167]. However, rs-fMRI captures

correlated patterns of activity rather than local similarities, which cannot be

represented by a traditional spatial convolution. Therefore, deep learning for

rs-fMRI has focused almost exclusively on patient-wise classification [168],

rather than network analysis. Our approach blends the ideas of image segmen-

tation and functional network extraction. Namely, we construct a similarity

graph from rs-fMRI data that summarizes functional connectivity between

ROIs. These graphs are then input to a novel graph neural network (GNN)

which leverages convolutional filters designed to act topologically upon simi-

larity matrices [169]. The output of our GNN is a vector that classifies each

node in the graph as either language, tumor, or background gray matter. Our

loss function reflects the large class-imbalance in our data, as language and

tumor represent a small fraction of the brain. Our model outperforms three

baseline approaches in language detection, overall accuracy, and AUC.

The CNI paper (GNN) only deals with language localization, which we

extend upon in our MEDIA paper to include motor localization as well. In
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our MEDIA paper model, we draw from the multi-task learning (MTL) lit-

erature [170, 171] to simultaneously classify motor and language networks

using a shared deep representation [172]. The goal of MTL is to improve the

generalizability of a model by training it to perform multiple tasks at the same

time [173]. Our architecture builds off of the CNI work and uses convolutional

filters that act on rows and columns of the functional connectivity matrix [169].

The resulting graph neural network (GNN) mines the topological properties

of the data in order to classify the eloquent brain regions. In addition, our

training strategy can easily accommodate missing patient data in a way that

optimizes the available information. This setup is highly advantageous, as the

fMRI paradigms administered to each patient may vary depending on their

case.

Our MEDIA paper extends upon the experiments and validation from

the CNI paper substantially. We validate our method using an in-house

dataset collected at the Johns Hopkins Hospital (JHH) as well as publicly

available data from the Human Connectome Project (HCP), in which we

simulate tumors in the healthy brain and include performance on the healthy

HCP data for reference. We demonstrate that our MTL-GNN achieves higher

eloquent cortex detection than popular machine learning baselines. We further

show that our model can recover clinically challenging bilateral language

cases when trained on unilateral language cases. Using an ablation study,

we assess the value of the multi-task portion of our network. We assess

robustness of our method by varying the functional parcellation used for

analysis, jittering the tumor segmentations, quantifying the effects of data
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augmentation, and performing a hyperparameter sweep. Finally, we include

experiments that separately address potential confounders to our analysis,

model optimization, and performance of our MT-GNN method on healthy

HCP data. Taken together, our results highlight the promise in using rs-fMRI

as part of presurgical planning procedures.

4.2 A graph neural network to localize language in
brain tumor patients

4.2.1 Model

The underlying assumption of our framework is that, while the anatomical

boundaries of the language network may shift, its connectivity with the rest

of the brain will remain consistent [33]. We construct a weighted graph from

the rs-fMRI data and classify each node in the graph as either belonging to the

language network or not. We approach this problem with a neural network

framework to capture complex interactions that define the language network.

Our GNN node classifer extracts salient edge-node relationships and node

features within the graph using a combination of specialized convolutional

filters along with fully-connected (FC) layers. An important distinction in

our problem is the presence of large anatomical lesions, i.e, the brain tumors.

Since the tumors often encroach into the gray matter, we introduce “missing"

full rows and columns in our graph. As the missing rows and columns are the

most salient features of the data, we introduce two background class labels,

“tumor" and “background gray matter" to avoid biasing the algorithm.
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Figure 4.1: The data workflow of our model. The rs-fMRI data is preprocessed and
then the Craddocks functional atlas is applied. The tumor boundaries are delineated
and introduced as rows and columns of zeros in the input similarity matrix.

4.2.1.1 Graph construction

Our method treats the rs-fMRI connectivity as a weighted similarity graph,

drawing inspiration from the graph theoretic literature [164, 165]. Let N be

the number of brain regions in our parcellation and T be the number of time

points for a rs-fMRI scan. We define xi ∈ RT×1 as the average time series

extracted from region i. We normalize each time series to have zero mean unit

variance. The input similarity matrix W ∈ RN×N is given by

W = exp
[︁
XTX− 1

]︁
. (4.1)

The tumor regions disrupt connectivity, and therefore are treated differ-

ently in our model formulation [152, 174, 34, 36]. In this work, we opt to set

all edges associated with tumor nodes to zero while maintaining the value

of 1 on the diagonal. We also create a separate “tumor" class at the MT-GNN

output, which allows the network to learn the patterns of zero values, so that

it does not bias the eloquent cortex localization. Fig. 4.1 shows the overall

workflow of obtaining the input matrix.
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Figure 4.2: The pipeline for the GNN model. Left: Graph construction encodes fMRI
and tumor information. Middle: Our GNN architecture employs E2E, E2N, and FC
layers for feature extraction. Right: We perform a node (parcel) identification task.

Our framework assumes that tumor boundaries have been predetermined

(i.e. segmented) on the voxel level. While we rely on manual segmentation

in this paper, our approach is agnostic to the segmentation method and can

easily be applied to automated techniques [175, 176]. Our similarity graph

construction asserts that Wi,j > 0 for all non-tumor regions. Therefore, even

two healthy regions with a strong negative correlation will still be more

functionally similar than tumor regions in our model. Our network achieves

near perfect (≈ 0.99) accuracy for the tumor class due to this setup, as expected

due to the zeroing out of tumor regions.

4.2.1.2 Network architecture

Fig. 4.2 shows our overall pipeline for the single-task GNN. Our GNN archi-

tecture employs both convolutional and FC layers to process node information.

While traditional convolutional layers assume a grid-like organization to ex-

tract spatially local features, our GNN uses one edge-to-egde (E2E) and one
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edge-to-node (E2N) layer developed in [169] that act topologically upon simi-

larity graph data. These convolutional filters act on full rows and columns of

the graph and were originally designed to perform regression for cognitive

scores from diffusion MRI data. Let m ∈ {1, · · · , M} be the E2E filter index,

Fm ∈ RN×N be the m-th E2E filter, and Bm ∈ RN×N be the bias. The feature

map Am ∈ RN×N output from E2E filter m is computed as

Am
i,j = ϕ

(︂ N

∑
n=1

Wi,nFm
i,n + Wn,jFm

n,j + Bm
i,j

)︂
(4.2)

where ϕ represents the activation function. Intuitively, an E2E filter for edge

(i, j) computes a weighted sum of edge strength over all edges connected to

either node i or j. Even with symmetric input W, the learned E2E filters and

corresponding feature maps are not necessarily symmetric, i.e Fm
i,j ̸= Fm

j,i. This

filter asymmetry is desirable, as we learn a rich representation of the data.

Our motivation for using the E2E layer lies in its ability to encode multiple

different views (maps) of the edge-to-edge similarities within our connectome

data. This asymmetry is desirable for language localization, as these systems

tend to be lateralized in the brain [177, 33]. At the E2E layer (green in Fig. 4.2),

we have multiple different views along the M dimension of the edge-to-egde

similarities within our connectome data.

The E2N layer condenses our representation from size N×N×M after the

E2E layer to N ×M, analogous to M features for each node. To obtain region-

wise representations, our E2N filter performs a 1D convolution along the

columns of each feature map, as the authors in [169] did not see improvement

in applying the convolution to either the columns or rows of each feature map.
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Furthermore, using a single orientation allows us to reduce the number of

parameters in the network, which is critical given our small dataset (S < 100).

Let gm ∈ RN×1 be the E2N filter and b ∈ RM×1 be the bias. The E2N output

am ∈ RN based on the input Am from Eq. 4.2 is computed as

am
i = ϕ

(︂ N

∑
n=1

gm
n Am

i,n + bm

)︂
. (4.3)

Mathematically, the E2N filter computes a single value for each node i by

taking a weighted combination of edges associated with it. Our motivation for

using this layer is to collapse our representation along the second dimension

to obtain M features for each node. This step is similar in nature to extracting

graph theoretic features, such as node centrality. In particular, we have a

representation that encodes the relationship each node has to its connectivity

matrix [178]. Though we use the convolutional filters developed in [169], our

network and overall task are very distinct from that in [169]. There are key

architectural differences to our GNN, which allow it to perform the desired

eloquent cortex localization. First, the original BrainNetCNN is designed

to make a single patient-wise prediction from the input connectivity matrix.

In contrast, our GNN makes node-level predictions by preserving the node

information through the fully-connected layers. Second, our GNN treats

anatomical lesions as a separate learned class in order to remove any biases

they introduce into the eloquent cortex detection.

Our node identification network uses a cascade of three FC layers of sizes

M × H1, H1 × H2 and H2 × 3 respectively. We apply activation functions

between each layer. The FC layers find nonlinear combinations of the features
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to best discriminate class membership for each brain parcel. Overall, our

network takes N × N input and outputs an N × 3 matrix for classification.

Notice that the first input dimension N is maintained throughout our whole

network and is not transformed. Therefore, our network maintains node

structure to ultimately discriminate class membership for all nodes within

one connectome at a time. As shown in Fig. 4.2, one design choice we make is

to set H2 > H1 as we’ve observed this relationship captures the structure of

our class membership well.

4.2.1.3 Loss function and implementation details

Naturally, there exists a large class imbalance in our setup, as the majority of

nodes considered will be background gray matter. We cannot rely on tradi-

tional data augmentation techniques to mitigate this imbalance, as our model

operates on whole-brain connectivity. To accomodate for the class imbalance,

we train our model with a modified version of the Risk-sensitive cross-entropy

(RSCE) loss function [179], which is designed to handle membership imbal-

ance in multi-class classification. Let ŷn
c be the output probabilitiy of our

network for assigning node n to class c and yn
c be 1 when node n belongs to

class c and 0 otherwise. The loss function per patient is

L(yn
c , ŷn

c ) = −
1
N

N

∑
n=1

C

∑
c=1

δc · yn
c log (ŷn

c ) (4.4)

where δc is the risk factor associated with class c. If δc is small, then we pay a

smaller penalty for misclassifying samples that belong to class c. Our strategy

is to penalize misclassifying language nodes (false negatives) larger than

misclassifying background (false positives) to encourage our model to learn
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the language distribution given a small number of language training samples.

We implement our network in PyTorch using the SGD optimizer with

weight decay = 5× 10−5 for parameter stability, and momentum = 0.9 to

improve convergence. For our model, ϵ = 1 and layer dimensions are M = 16,

H1 = 9, H2 = 27 and C = 3. We train our model with learning rate .005 and

80 epochs, which provides for reliable performance without overfitting. The

LeakyReLU(x) = max(0, x) + 0.33·min(0, x) activation function is applied at

each hidden layer. Empirically, this activation function is robust to a range of

initializations. A softmax activation is applied at the final layer for classifica-

tion. After cross-validation, we set δ = (1.1, .3, .15) for language, tumor, and

neither classes respectively.

4.2.2 Experimental results

4.2.2.1 Baseline Comparisons

We evaluate the performance of our GNN against 3 baseline algorithms. The

first is a linear SVM based on the graph theoretic measures node degree,

betweenness, closeness, and eigenvector centrality [178]. The second baseline

is a random forest (RF) on the stacked rs-fMRI similarity features of each node.

We omit tumor class and nodes for SVM and RF as the algorithms does not

exploit the spatial consistency of the similarity matrix. The last baseline is

an artificial neural network (ANN) to observe how adding specialized E2E

and E2N layers changes performance for this task. The ANN maintains the

same input-output relationship, total parameter number, activations, and loss

function as the GNN.
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Figure 4.3: Left: One left-hemisphere language network (red) subject. Right: One
bilateral language network subject.

4.2.3 Dataset and evaluation criteria

We evaluate the GNN language detector on rs-fMRI data from 60 patients

who underwent preoperative mapping as part of routine presurgical workup.

Preprocessing details can be found in Chapter 2. Our ground truth language

annotations are derived from task-fMRI activations of the same patients during

two language paradigms: sentence completion (SC) and silent word genera-

tion (SWG). Our dataset includes 55 patients with left-hemisphere language

networks and 5 patients with bilateral networks. The tumor boundaries for

each patient were manually delineated by a medical fellow using the MIPAV

software. Fig. 4.3 shows language areas (red) for two separate subjects to

motivate the heterogeneity of our cohort.

We parcellate our rs-fMRI data using the Craddocks functional atlas [59]

with the cerebellar regions removed due to inconsistent acquisition (total

N = 384). We assign a parcel to the language network if a majority of its

voxels coincided with the ground truth task activations. We employ a ten-fold

cross validation for training and testing. We stratify our folds by ensuring

89



at most one bilateral language subject is in each fold. We report language

class accuracy as well as overall accuracy for each method that reflect a viable

trade-off between true positive rate (TPR) and true negative rate (TNR). For

the same set of hyperparameters that achieved the language and overall

accuracies reported, we also report sensitivity (TPR) and specificity (TNR). We

compute and report area under the curve (AUC) by varying hyperparameter

settings to approximate ROC. We consider language vs. not language for each

ROC statistic reported.

4.2.4 Results

4.2.4.1 Node classification

We present our results for the node identification task. Tumor class accuracy

is not reported, as both the ANN and GNN achieved near perfect (≈ .995) ac-

curacy due to the assumptions of our setup. Table 4.1 reports the node identi-

fication performance across all methods. The median for language and overall

is reported. As seen, our GNN outperforms all baselines in each category.

This notable performance is especially highlighted in the AUC column, as our

method has the best trade-off between TPR and FPR. Our results suggest that

approaching this problem with a deep learning framework is favorable, as

both neural networks outperform the traditional machine learning baselines.

Furthermore, we show a marked increase in performance with employing

the specialized convolutional filters. This increase suggests that our network

learns a more discriminative representation of language at rest than the ANN.

90



Table 4.1: Node identification statistics for each method.

Method Language Overall Sensitivity Specificity AUC
Linear SVM 0.56 0.52 0.55 0.49 0.53

RF 0.38 0.77 0.34 0.89 0.63
ANN 0.65 0.76 0.58 0.73 0.70
GNN 0.79 0.84 0.73 0.81 0.78

4.2.4.2 Analysis of Predicted Language Area:

The specificity of our method is lower than expected due to the hemispheric

symmetry of rs-fMRI data. We saw that the most frequent misclassification

from our model was assigning contralateral parcels to the language class.

We ran two experiments to probe whether our GNN is learning connectivity

patterns associated with language rather than memorizing node locations.

In Fig. 4.4 (left), we plot the histogram of true (pink) vs. predicted (blue)

language parcels for frequency > 0. Each bin represents a different group of

parcels, showing a large variety of language parcels in both ground truth and

predicted. Second, we compared the GNN output with seed based correlation

analysis (SBA), where the “seed" for each patient is selected based on the

ground truth task-fMRI activations. The average rs-fMRI time course within

the seed location is correlated with each of the average time courses defined

by our parcellation. The correlation maps are thresholded at ρ > 0.6 to

retain only the strong associations. Fig. 4.4 (right) illustrates a representative

example. Highlighted by the white arrows, we observe right-hemisphere over

prediction (blue) from our model. However, as shown by the SBA map, these

right-hemisphere parcels have high resting-state connectivity with the seed
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Figure 4.4: Left: Histogram of true (pink) vs predicted (blue) language parcels for
frequency > 0. Right: Arrows show overprediction overlaps with seed based maps.

average time course. Our GNN achieves a median of .85 dice overlap between

the predicted language areas and the seed based correlation maps. As the

histogram shows over prediction from our model, the SBA has high overlap

with predicted areas.

4.2.4.3 Bilateral language identification

Our final experiment evaluates whether the GNN can recover a bilateral lan-

guage network, even when this case is not present in the training data. Here,

we trained the model on 55 left-hemisphere language network patients and

tested on the remaining 5 bilateral subjects. Our model correctly predicted

bilateral parcels in all five subjects. Fig. 4 shows ground truth (red) and pre-

dicted language maps (blue) for two bilateral subjects. The median language

class accuracy for these five cases was .64. Empirically, our algorithm had

trouble detecting language with the same accuracy as reported in Table 1 due

to the lack of training information.

Up until now, we have demonstrated the first automated method to iden-

tify the language areas of eloquent cortex in brain tumor patients using rs-fMRI

connectivity. Our model learns the resting-state functional signature of the
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Figure 4.5: Ground truth (red) and predicted (blue) for two separate subjects. All
bilateral subjects were held out of training.

language network within this tumor cohort by leveraging specialized convo-

lutional filters that encode edge-node relationships within similarity matrices.

We prove that the features extracted from our GNN are more informative for

this task than standard graph theoretic features and features extracted from

an ANN. We show that our model can correctly identify bilateral language

networks even when trained on only unilateral network cases. Future work

will focus on decoupling the lateralization and localization problems. This

approach will help us overcome the intrinsic symmetry of rs-fMRI data and

improve the specificity of our model. We extend upon this work by adding

a multi-task learning setting to include motor localization alongside extra

validation with an augmented dataset and various experiments to probe the

generalizability of our deep learning approach.
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Figure 4.6: The overall workflow of our model. N is number of nodes, M is number
of convolutional feature maps, H1 is number of neurons in the first FC layer and H2
is the number of neurons in the second FC layer. Our model uses specialized E2E and
E2N filters as well as employs multi-task learning on a variety of available t-fMRI
paradigms. Each grey module represents a separate 3-class segmentation task. The
variables L, M1, M2 and M3 represent the language, finger, tongue, and foot networks
respectively, as shown by the segmentation maps where red, blue, and white refer to
the eloquent, neither, and tumor classes respectively.

4.3 Multi-task graph neural networks for localiza-
tion

4.3.1 Model

4.3.1.1 Extending to a multi-task learning setting

Fig. 4.6 shows the overall multi-task learning GNN (MT-GNN) network from

our [37] paper. As shown, we treat the similarity graph construction the same

as in [36] and our network uses the same E2E and E2N filters as previously

described. The MT-GNN extends upon the base GNN by adding multi-

task learning branches to localize various motor sub-networks as well as the

language network.In addition, our training strategy can easily accommodate

missing patient data in a way that optimizes the available information. This
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setup is highly advantageous, as the fMRI paradigms administered to each

patient may vary depending on their case.

We use two fully-connected layers with neurons H1 and H2 to extract

features before the multi-task (MT) portion. The network then branches off

into the MT classifier, which effectively decouples the FC weights according

to which functional system it is responsible for identifying. The grey blocks in

Fig. 4.6 show the MT-FC layers, where we have four separate functional sys-

tems to identify. Each grey module performs a separate 3-class classification

task, shown by the segmentation maps on the RHS of Fig. 4.6. At a high level,

the MT-FC layer leverages commonalities in the rs-fMRI connectivity patterns

between the language and motor networks. This shared representation dras-

tically reduces the number of parameters, relative to training the separate

E2E and E2N layers in our preliminary work [36]. Clinically, our model can

be extended to an arbitrary number of tasks by adding more MT branches,

thus providing a valuable tool for presurgical mapping. Our MT-GNN also

constructs a shared representation for language and motor areas which may

shed insight into brain organization.

4.3.1.2 Classification and loss functions

Each MT-FC layer has dimension N × 3 where N is the number of regions,

and the three classes denote eloquent, tumor, and background gray matter,

represented by the colors red, white, and blue respectively on the segmentation

maps in Fig. 4.6. Recall that we treat the tumor as a separate learned class

to remove any bias that zeroing out tumor edges might introduce into the
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model. We emphasize that the tumor detection accuracy is not the main goal

or result of this work. Instead, our goal is to maximize the eloquent detection

performance. We keep the tumor regions so the input connectivity matrix is

of the same dimension for each patient. Removing the tumor regions would

result in different size input matrices across patients, which our model is not

designed to handle. Softmax is applied and each region is classified into one

of the three classes with an argmax operator. One obstacle in our datasets

is the limited number of eloquent class training samples, since the language

and individual motor areas are small. For the JHH cohort, the average class

membership is 4.7%, 10.1% and 85.2% for the eloquent, tumor, and background

gray matter class respectively. Since the convolutional filters are designed

to operate upon the whole-brain connectivity matrix, our class imbalance

problem cannot be mitigated by traditional data augmentation techniques.

Therefore, we train our model with a modified Risk-Sensitive Cross-Entropy

(RSCE) loss function [179], which is designed to handle membership imbalance

in multi-class setting. Let δi be the risk factor associated with class i. If δi is

large, then we pay a larger penalty for misclassifying samples that belong to

class i. Due to a training set imbalance, we select different penalty values for

the language class {δl
i}3

i=1 and motor classes {δm
i }3

i=1 respectively.

Let L, M1, M2, and M3 ∈ RN×3 (Fig. 4.6) be the output of the language,

finger, foot, and tongue MT-FC layers respectively. Each column of these

matrices represents one of three classes: eloquent, tumor, and background.

Let Yl, Ym1 , Ym1 , and Ym3 ∈ RN×3 be one-hot encoding matrices for the region-

wise class labels of the language and motor subnetworks from t-fMRI. Our
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loss function is the sum of four terms:

LΘ(W, Y) =

−
3

∑
i=1

δl
i log(Li)

TYl
i⏞ ⏟⏟ ⏞

Language Loss Ll

−
3

∑
i=1

δm
i log(Mi

1)
TYm1

i⏞ ⏟⏟ ⏞
Finger Loss Lm1

−
3

∑
i=1

δm
i log(Mi

2)
TYm2

i⏞ ⏟⏟ ⏞
Foot Loss Lm2

−
3

∑
i=1

δm
i log(Mi

3)
TYm3

i⏞ ⏟⏟ ⏞
Tongue LossLm3

(4.5)

The error from all four loss terms is backpropagated throughout the network

during training, as illustrated by the green arrows in Fig. 4.6. Our framework

allows for overlapping eloquent labels, as brain regions can be involved in

multiple cognitive processes. To reiterate, our goal is to identify subnetworks

of the eloquent cortex for presurgical planning. We take a supervised approach

to this problem via multi-task classification. The model presented in this work

focuses on localizing four eloquent subnetworks, as our in-house dataset

contains task fMRI labels for three motor areas and one language area. We

emphasize that our framework can be extended to any number of functional

subsystems if the proper training labels exist. In this case, the user would

simply add MT-FC layers and the corresponding cross-entropy term in the

loss function. From a modeling standpoint, our edge-to-edge layer is designed

to extract informative subnetworks from the rs-fMRI connectivity matrix to

maximize downstream separation of the desire classes. Hence, the value of

M (in this work between 8-16) is closely tied to the number of subnetworks

extracted from the data.
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Figure 4.7: Training and validation error on HCP2 dtaset for early stopping.

4.3.1.3 Implementation details and hyperparameter selection

We used 10-fold cross validation (CV) on the HCP2 dataset (details in chapter 2)

to fix the hyperparameters for all experiments. In this manner, our evaluation

on the HCP1 and JHH datasets do not include biased information from the

hyperparameter selection. Fig. 4.7 shows the generalization gap between

training and testing, which was used to determine epoch number. Overall, we

observe stable training and validation curves, which gives us confidence in

the optimization of our network. For the δ hyperparameters, we performed

a coarse grid search from 0− 10 in increments of of 10−1 until we found a

suitable range of performance. We then performed a finer grid search in

increments of 10−2 to obtain the final values shown in Table 4.2. We fixed the

same δ values for the tumor and neither classes across branches.

Due to the clinical protocol, most JHH patients have only undergone a
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Table 4.2: Hyperparameters determined via CV on the separate HCP2 dataset. lr and
wd refer to learning rate and weight decay

Parameter value Parameter value
N 384 wd 5× 10−5

M 8 Epochs 104
lr 0.005 δm (1.27, 0.46, 0.25)
H1 64 δl (2.02, 0.46, 0.25
H2 27

subset of the three motor t-fMRI tasks. We handle this missing data during

training by freezing the weights of the MT-FC layer in Fig. 4.6 that corre-

sponds to the missing task when we backpropagate [180, 181]. Our strategy

ensures that we mine the relevant information from the data present while

preserving the fine-tuned layers of the branches that correspond to missing

tasks. We train with batch size equal to one, to accommodate the missing tasks

across patients. The number of subjects that performed each task is listed in

Chapter 2 (datasets). We implement our network in PyTorch [182] using the

SGD optimizer. The LeakyReLU(x) = max(0, x) + 0.33·min(0, x) activation

function is applied at each hidden layer. A softmax activation is applied at the

final layer for classification. With GPU available, the total training time of our

model is 5 minutes.

4.3.2 Localization experimental results

4.3.2.1 Baseline algorithms

We evaluate the performance of our method against three baseline algorithms.

1. A Multi-class SVM on graph theoretic features

2. Separate Random Forest Classifiers on stacked similarity matrices

99



3. A Fully-connected neural network with a final MT-FC layer (FC-NN)

The first baseline is a multi-class linear SVM based on node degree, between-

ness centrality, closeness centrality, and eigenvector centrality [183, 178]. We

include this baseline as a traditional machine learning approach for network

detection in graphs. We experimented with the RBF, Gaussian, and linear

kernel classes and empirically determined that the linear kernel achieves the

highest AUC metrics. We set the SVM hyperparameter c = 15.2 using CV on

the HCP2 dataset. The second baseline is a Random Forest (RF) classifier on

the row vectors of the rs-fMRI similarity matrices, thus taking the connectivity

as its input feature vector. Here, we train and test one separate RF classifier

for each of the four functional systems. We include this baseline to assess the

predictive power of the raw rs-fMRI correlations. We have implemented the

RF classifier in python using 250 decision trees. The tumor nodes and class are

removed for the machine learning baselines, which operate on the node level.

Our deep learning baseline is an artifical neural network that contains

only fully-connected layers (FC-NN). We include this baseline to observe the

performance gains in adding the specialized E2E and E2N filters. The FC-NN

has five hidden layers and then a final MT-FC layer. We include more hidden

layers in the FC-NN than the MT-GNN because it achieved a beter trade-off

between architecture depth and width. We optimized the hyperparameters for

the FC-NN using the HCP2 dataset as well, resulting in δm = (1.34, 0.43, 0.31)

and δl = (2.13, 0.43, 0.31). The tumor is handled in the same way for the

MT-GNN (proposed) and FC-NN (baseline).
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Figure 4.8: We use repeated 10-fold CV for model training and testing. We repeat
each CV 10 times, ensuring that fold membership changes for each run. We report
the mean and standard deviation of eloquent class true positive rate (TPR), and
eloquent class area under the curve (AUC). For each baseline, we report the FDR
corrected p-value from the associated t-score between our MT-GNN and the baseline,
as evaluated on the AUC metric. In addition, we report the specificity, F1 and t-scores
for the main classification results shown in Tables 3 and 4.

4.3.2.2 Evaluation criteria

Fig. 4.3.2.2 shows the evaluation workflow of our experiments. For each task,

we report the eloquent class true positive rate (TPR) and eloquent class AUC.

We note that all experiments in this work are performed on the parcel (ROI)

and not voxel level. This dimensionality reduction is critical when working

with a smaller clinical dataset. Eloquent class TPR is computed as the total

number of correctly classified eloquent parcels divided by the total number

of eloquent parcels. The AUC metric reported balances the tradeoff between

the true and false positive rates of detecting the eloquent class. The reported

statistics were determined using repeated 10-fold CV, where each run has a

different fold membership. We report the mean and standard deviation of the

metrics. To demonstrate statistically significant improvement, we perform a

t-test on the repeated 10-fold CV runs, which corrects for the independence

assumption between samples [151]. Formally, let r be the number of times we
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repeat k-fold CV. We observe two learning algorithms A and B and measure

their respective AUCs ai,j and bi,j for fold i and run j. Let xi,j = ai,j − bi,j be

the performance difference, n2 be the number of testing samples, n1 be the

number of training samples, and σ̂2 be the sample variance. The test statistic

is is given by

t =
1

k·r ∑k
i=1 ∑r

j=1 xi,j√︂
( 1

k·r +
n2
n1
)σ̂2

. (4.6)

The variable t in Eq. 4.6 follows a t-distribution with degrees of freedom

d f = kr− 1.

4.3.2.3 HCP simulation study localization

We validate our approach on a synthetic dataset which uses healthy con-

nectomes with fake simulated tumors. This experiment provides a proof-of-

concept for our methodology on data which has similar characteristics as our

main JHH cohort. The “tumors" added to this dataset are randomly positioned

but created to be spatially continuous with the same size as the real tumor

segmentations we obtained from the JHH cohort.

The results for this experiment are summarized in Table 4.3, where we

show that the MT-GNN has superior performance in all cases when compared

to the baselines. Our performance gains are underscored by the t-test, where

we observe very small p-values (p << 0.001) for each competing baseline

algorithm among each task present. Therefore, our method captures the

complicated interactions between the eloquent cortex much better than the

competing baseline algorithms. We also observe less performance variability

across CV runs with our method compared to all of the baselines, which
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Table 4.3: Mean plus or minus standard deviation for eloquent class true positive rate
(TPR), specificity, F1 and AUC for the HCP cohort (100 subjects). The final column
shows the FDR corrected p-values for the associated t-scores where we compare AUC
between our method against each baseline.

Task Method Sens Spec F1 AUC t-score p-value
Lang MTGNN 0.67 ±

0.013
0.62 ±
0.012

0.63 ±
0.014

0.68 ±
0.01

FCNN 0.59 ±
0.022

0.56 ±
0.021

0.58 ±
0.019

0.62 ±
0.018

14.08 3.5 ×
10−44

RF 0.32 ±
0.036

0.61 ±
0.026

0.45 ±
0.013

0.52 ±
0.034

17.02 1.8 ×
10−64

SVM 0.36 ±
0.026

0.49 ±
0.024

0.39 ±
0.018

0.51 ±
0.016

34.68 2.7 ×
10−262

Finger MTGNN 0.78 ±
0.011

0.75 ±
0.013

0.77 ±
0.014

0.82 ±
0.008

FCNN 0.75 ±
0.014

0.69 ±
0.016

0.71 ±
0.015

0.73 ±
0.011

17.84 3.1 ×
10−70

RF 0.41 ±
0.026

0.71 ±
0.022

0.54 ±
0.023

0.58 ±
0.028

27.61 1.2 ×
10−166

SVM 0.41 ±
0.024

0.55 ±
0.028

0.42 ±
0.025

0.52 ±
0.015

52.66 ≈ 0

Foot MTGNN 0.83 ±
0.009

0.82 ±
0.008

0.8 ±
0.011

0.79 ±
0.009

FC-NN 0.73 ±
0.016

0.65 ±
0.017

0.66 ±
0.013

0.71 ±
0.015

21.45 4.9 ×
10−101

RF 0.42 ±
0.025

0.74 ±
0.026

0.46 ±
0.021

0.58 ±
0.029

14.32 1.2 ×
10−45

SVM 0.50 ±
0.031

0.53 ±
0.028

0.48 ±
0.027

0.51 ±
0.013

65.72 ≈ 0

Tongue MTGNN 0.80 ±
0.01

0.78 ±
0.009

0.77 ±
0.011

0.78 ±
0.009

FC-NN 0.76 ±
0.012

0.72 ±
0.014

0.73 ±
0.016

0.73 ±
0.015

7.63 9.1 ×
10−14

RF 0.44 ±
0.03

0.69 ±
0.032

0.50 ±
0.026

0.57 ±
0.032

23.73 2.1 ×
10−123

SVM 0.55 ±
0.023

0.52 ±
0.025

0.48 ±
0.024

0.53 ±
0.014

49.61 ≈ 0
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demonstrates robustness to the training data. We note that the RF classifier has

low sensitivity and the mutli class SVM performs slightly better than chance.

The performance of these machine learning baselines suggests that eloquent

cortex mapping is a particularly challenging problem. Highlighted by the

AUC column, the MT-GNN outperforms the FC-NN baseline in all cases.

Using convolutional filters, the MT-GNN finds stereotypical connectivity

patterns that identify the eloquent cortex. Compared to the motor network

localization, all methods perform worse when identifying language networks,

likely due to its higher anatomical variation. Fig. 4.9 shows boxplots of the

AUC metric among all four methods and all four tasks. The colors red, blue,

green and yellow refer to the MT-GNN, FC-NN, RF, and SVM algorithms

respectively. Here we can see the performance gain and robustness of our

method, which has larger median values and smaller deviations than the

baselines. We repeat the performance of the algorithms on the healthy HCP

dataset in the supplementary material as a way of gauging the effect that the

additional tumor class has on this problem.

4.3.2.4 JHH cohort and bilateral language experiment

Our primary localization task is on the JHH tumor cohort. Table4.4 shows the

eloquent class accuracy, AUC for detecting the eloquent class and t-scores for

the JHH dataset. Once again, the MT-GNN has the best overall localization

performance. Highlighted by the AUC and p-value column, the MT-GNN

outperforms the baselines in nearly all cases, except for the tongue network.

Similar to the HCP study, we observe smaller deviations with our method com-

pared to all of the baselines, which shows robustness even when the method
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Figure 4.9: Boxplot for the AUC metric reported in Table 4.3 using 10 repeated 10-fold
CVs. The colors red, blue, green and yellow refer to the MT-GNN, FC-NN, RF, and
SVM methods respectively. We observe higher median performance and smaller
deviations in our proposed method compared to the baseline algorithms.

is trained and tested on different subsampled versions of the data. Among

both the HCP simulation study and the JHH dataset, the HCP language task

was the most challenging to localize, likely due to differences between the

HCP and JHH language protocols. The HCP language task was designed

to target language comprehension [139] while the JHH sentence completion

and silent word generation task were designed to target speech and language

generation [131, 132, 33]. Fig. 4.10 shows boxplots of the AUC metric among

all four methods and tasks in the JHH cohort. Once again, we can see the

robustness of our MT-GNN, which has larger median values for three out

of the four tasks and smaller deviations for all four tasks compared to the

baselines.

Our next experiment using the JHH cohort evaluates whether the proposed

model and baselines can accurately identify bilateral language networks, even
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Table 4.4: Mean plus or minus standard deviation for eloquent class TPR, specificity,
F1 and AUC for the JHH cohort, where the number of subjects who performed each
task is shown in the first column. The final column shows the FDR corrected p-values
for the associated t-scores where we compare AUC between our method against each
baseline.

Task Method Sens Spec F1 AUC t-score p-value
Language MTGNN 0.75 ±

0.011
0.72 ±
0.01

0.74 ±
0.013

0.76 ±
0.013

(N = 62) FCNN 0.68 ±
0.014

0.63 ±
0.016

0.67 ±
0.013

0.70 ±
0.015

11.56 3.8 ×
10−30

RF 0.49 ±
0.034

0.65 ±
0.027

0.59 ±
0.029

0.61 ±
0.035

12.11 5.7 ×
10−33

SVM 0.46 ±
0.017

0.55 ±
0.019

0.45 ±
0.02

0.52 ±
0.012

50.76 ≈ 0

Finger MTGNN 0.85 ±
0.014

0.83 ±
0.016

0.82 ±
0.013

0.83 ±
0.015

(N = 38) FCNN 0.77 ±
0.019

0.65 ±
0.016

0.73 ±
0.019

0.75 ±
0.017

8.36 2.7 ×
10−16

RF 0.48 ±
0.039

0.66 ±
0.028

0.57 ±
0.034

0.60 ±
0.029

24.22 1.7 ×
10−128

SVM 0.55 ±
0.02

0.54 ±
0.021

0.53 ±
0.015

0.54 ±
0.014

43.48 ≈ 0

Foot MTGNN 0.81 ±
0.023

0.81 ±
0.021

0.79 ±
0.019

0.78 ±
0.025

(N = 18) FC-NN 0.71 ±
0.023

0.62 ±
0.025

0.68 ±
0.024

0.73 ±
0.025

9.32 5.5 ×
10−20

RF 0.45 ±
0.044

0.67 ±
0.038

0.51 ±
0.039

0.66 ±
0.047

10.58 2.0 ×
10−25

SVM 0.53 ±
0.028

0.57 ±
0.023

0.49 ±
0.025

0.54 ±
0.021

25.63 1.2 ×
10−143

Tongue MTGNN 0.82 ±
0.015

0.81 ±
0.012

0.82 ±
0.014

0.80 ±
0.014

(N = 41) FC-NN 0.83 ±
0.019

0.80 ±
0.011

0.83 ±
0.018

0.80 ±
0.019

−0.91 0.82

RF 0.38 ±
0.028

0.65 ±
0.029

0.52 ±
0.024

0.60 ±
0.031

18.96 3.5 ×
10−79

SVM 0.58 ±
0.021

0.51 ±
0.022

0.50 ±
0.025

0.53 ±
0.015

37.69 1.34 ×
10−309
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Figure 4.10: Boxplot for the AUC metric reported in Table 4.4 The colors red, blue,
green and yellow refer to the MT-GNN, FC-NN, RF, and SVM methods respectively.
We observe higher median performance in three out of four tasks and smaller devia-
tions in all four tasks with the MT-GNN.

when this case is not present in the training set. This experiment assessess

how well the models can identify unseen language regions based on intrinsic

rs-fMRI connectivity patterns. We only perform this experiment on the JHH

cohort because the JHH sentence completion and silent word generation tasks

are designed to target lateralized systems, as compared to the HCP language

processing and comprehension tasks. Here, we trained the model on 57 left-

hemisphere language network patients and tested on the remaining 5 bilateral

subjects. Table 4.5 shows the mean eloquent class and the overall accuracies

for the 5 held out subjects.

Our proposed model outperforms all baselines in both per-class and overall

accuracy. Fig. 4.11 shows the ground truth (blue) and predicted (yellow) labels

for one bilateral language network across methods. The MT-GNN shows

the best trade-off between true positives and false positives compared to

the baselines. We observe that the FC-NN overpredicts too many incorrect

107



Table 4.5: Mean class and overall accuracy for testing on 5 bilateral language subjets.
As a comparison, the mean eloquent class TPR from table 4.4 is also shown in the
final column.

Method Bilateral
TPR

overall Eloquent
TPR

MT-GNN 0.70 0.77 0.75
FC-NN 0.51 0.72 0.68
RF 0.33 0.76 0.49
SVM 0.41 0.63 0.46

Figure 4.11: Task-fMRI "ground truth" activations (blue) and predicted (yellow) labels
for one bilateral language network example across all algorithms. The MT-GNN has
the highest localization accuracy.

regions, the RF is unable to detect bilateral activation, and the SVM completely

misses the correct activation pattern. We point out that due to a small sample

size, the bilateral language identification experiment is not as conclusive

as the main results, but rather provides a proof-of-concept and clinically

valuable assessment on the JHH cohort. Specifically, this experiment provides

evidence that our MT-GNN does not simply memorize nodes, but rather finds

intrinsic connectivity patterns associated with language. In addition, language

lateralization is a key problem in clinical neuroradiology, and the bilateral

experiment is exciting preliminary evidence that our MT-GNN can be applied

to other clinical problems in the future.
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Figure 4.12: Ablation study boxplots for AUC between both cohorts. Red refers to
MT-GNN and blue refers to single GNN.

4.3.3 Additional experiments

4.3.3.1 Ablation study

In this section, we assess the value of adding the multi-task learning com-

ponent to our network via an ablation study. Specifically, we evaluate per-

formance on each of the four networks by removing the other three MT-FC

layers from the model during training and testing. Therefore, each single

GNN (SGNN) is trained separately for each task, and evaluated on that same

task, without any information from the other three tasks present. Table 4.6

shows the mean eloquent TPR, AUC for eloquent class detection, and cor-

rected p-value for AUC between the MT-GNN and SGNN for the JHH cohort.

Highlighted by p < 0.01, our MT-GNN outperforms the SGNN in three out of

four experiments. Fig. 4.12 shows the side-by-side boxplots for AUC between

the MT-GNN and SGNN, where we can see a clear divide in performance

between the two methods. The MT-GNN also has smaller variability, which
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Table 4.6: Mean plus or minus standard deviation for eloquent TPR and AUC for
the ablation study, where the cohort is shown in the first column. The final column
shows the corrected p-values from the associated t-scores where we compare AUC
between our method against the single GNN (SGNN)

Task Method TPR AUC p-value
Lang. MT-GNN 0.75± 0.011 0.76± 0.013

SGNN 0.73± 0.019 0.72± 0.026 1.5e-9
Finger MT-GNN 0.85± 0.014 0.83± 0.015

SGNN 0.82± 0.021 0.81± 0.027 0.28
Foot MT-GNN 0.81± 0.023 0.78± 0.025

SGNN 0.71± 0.032 0.72± 0.034 3.3e-3
Tongue MT-GNN 0.82± 0.015 0.80± 0.014

SGNN 0.79± 0.019 0.77± 0.023 2.2e-3

shows robustness in our method.

4.3.3.2 Degrading tumor segmentation

Next, we evaluate the performance of the MT-GNN on the JHH tumor cohort

without perfect manual tumor segmentations. Here, we corrupt the tumor

segmentations using a combination of translation, dilation, and/or shrinking

operators on the original manual segmentations. We include this experiment

to assess how robust our method is to the segmentation accuracy.

Fig. 4.13 shows boxplots for the AUC metric as the tumor segmentations

become more corrupt, expressed by the dice coefficient between the corrupted

and true segmentations on the x-axis. As expected, overall detection per-

formance decreases as tumor corruption increases. This result is likely due

to the network learning connectivity patterns from tumor regions, which

are confounding features. Also, the corrupted tumor segmentations could
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Figure 4.13: AUC boxplots using the MT-GNN on the JHH dataset as the tumor
segmentations decrease in accuracy. The x-axis shows the dice coefficient of the
corrupted tumor segmentation used for evaluation with the manual tumor segmen-
tation. Corruption occurred via a combination of translating, dilating, or shrinking
the manual segmentations. The colors red, blue, green and yellow refer to the JHH
language, finger, foot and tongue tasks.

encroach into the eloquent cortex regions, which would also derease perfor-

mance. For relatively higher dice coefficients (> .85), we observe only a slight

decrease in performance. Therefore, the model does not require perfect tumor

segmentations to work, which is valuable in a clinical setting.

We acknowledge that a restriction of our model is to have tumor segmen-

tations manually dilineated, which can be time consuming. However, we note

that there exists a large body of work describing automated techniques for

tumor segmentation [175, 176] where state-of-the-art performance is up to 0.85

dice overlap with the true segmentations. We observe that our method only

slightly decreases in performance at this dice coefficient, shown by Fig.4.13.

Therefore, we believe our MT-GNN is a valuable tool for presurgical evalua-

tion.
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Figure 4.14: AUC (red) and class accuracy (blue) for the language class on the JHH
cohort as δl,1 is swept in increments of 0.1.

4.3.3.3 Hyperparameter sweep for δl
1

To further probe the generalizability of our model, we sweep the language

class hyperparameter δl
1 while keeping the other hyperparameters constant

and plot the AUC and class accuracy on the JHH dataset. For brevity, we

only show the sweep for the language class, as the tradeoff between AUC

and TPR for the motor class shows the same trend. Fig. 4.14 shows the

results, where AUC is in red, eloquent class TPR is in blue, and δl
1 is swept in

increments of 0.1. As δl
1 increases, we observe an increase in false-positives, for

example, when δl
1 exceeds 2.1, AUC drops as the true positive rate continues

to rise. Clinically, it is more important to minimize false negatives (missing

the eloquent cortex) than to minimize false positives, as there is a greater cost

for damaging the eloquent cortex during surgery. Therefore, our weighted

cross-entropy strategy proves useful, even if our model tends to over predict

the eloquent cortex class.
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We note that the risk factor δc plays a role in the model performance Specif-

ically, large values of δc encourage overprediction of the eloquent class, as

illustrated in Fig.4.14. However, we emphasize that in this clinical application,

false positive predictions are more desirable than false negative predictions,

due to the severe outcomes of accidental damage to the eloquent cortex [19,

153]. Nonetheless, rectifying these overpredictions is a valuable direction for

future work. In addition, we acknowledge that due to partial volume effects,

our framework is conservative in handling the tumor, as the boundary parcels

usually contain some number of healthy voxels. One future workaround is to

use a spatially hierarchical learning scheme that increases resolution to the

voxel level.

4.3.3.4 Varying parcellation choice

It is understood that the choice of parcellation can affect the rs-fMRI con-

nectivity due to varying spatial resolution [184, 185]. Therefore, we perform

eloquent cortex localization using our MT-GNN on three additional scales of

the Craddocks atlas (N = 262, N = 432, and N = 432 regions). We choose

scales that are either coarser or finer than the original N = 384 atlas to observe

the effect that varying parcel size has on performance.

Table 4.7 shows the evaluation metrics using the MT-GNN for the JHH co-

hort among all three atlases considered, where the p-values for are computed

with respect to the original N = 384 atlas. Considering a p < 0.01 threshold,

we observe only a significant difference in performance among one of four

tasks present. We observe the N = 318 atlas outperforming the original in
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Table 4.7: Mean plus or minus standard deviation for eloquent TPR and AUC when
varying the parcellation atlas. The final column shows the corrected p-values for the
associated t-scores where we compare AUC between N = 384 against N = 318 and
N = 262.

Task Atlas TPR AUC p-value
Language 384 0.75± 0.011 0.76± 0.013

432 0.77± 0.014 0.77± 0.012 0.11
318 0.73± 0.018 0.75± 0.016 0.06
262 0.71± 0.014 0.74± 0.017 1.3e-3

Finger 384 0.85± 0.014 0.83± 0.015
432 0.88± 0.013 0.84± 0.013 0.73
318 0.8± 0.016 0.80± 0.017 2.7e-3
262 0.76± 0.019 0.79± 0.014 7.0e-7

Foot 384 0.81± 0.023 0.78± 0.025
432 0.82± 0.012 0.78± 0.023 0.52
318 0.81± 0.021 0.79± 0.023 0.99
262 0.78± 0.027 0.77± 0.024 0.49

Tongue 384 0.82± 0.015 0.80± 0.014
432 0.83± 0.011 0.82± 0.015 0.96
318 0.81± 0.016 0.79± 0.015 0.19
262 0.78± 0.019 0.76± 0.017 4.9e-5

the foot functional subnetworks, denoted by a large p-value. Regarding the

N = 262 atlas, however, three of the four tasks have a significant decrease

in AUC. Our method is robust across the N = 384 and N = 318 scales but

degrades in performance when the parcels become too coarse, as is the case

with N = 262. This result implies that there is a certain spatial resolution in

atlas choice that is necessary for our method to remain robust, likely due to

the relatively small size of the networks we identify. However, we observe

that the N = 432 atlas does not significantly outperform the N = 384 atlas,

which suggests that there may be a limit of spatial resolution to which the

chosen model architecture can achieve additional performance gains.
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Table 4.8: Mean plus or minus standard deviation for eloquent TPR and AUC with
and without data augmentation. The final column shows the corrected p-values
associated with the t-scores where we compare AUC between the original and aug-
mented.

Task Augment TPR AUC p-value
Language No 0.75± 0.011 0.76± 0.013

Yes 0.76± 0.01 0.76± 0.011 0.21
Finger No 0.85± 0.014 0.83± 0.015

Yes 0.86± 0.011 0.84± 0.012 0.94
Foot No 0.81± 0.023 0.78± 0.025

Yes 0.80± 0.012 0.79± 0.015 0.85
Tongue No 0.82± 0.015 0.80± 0.014

Yes 0.80± 0.017 0.80± 0.013 0.39

4.3.3.5 Boosting training set via data augmentation

Next, we use data augmentation to artificially increase the training set size. We

include this experiment to probe the limitations of our small clinical dataset

when training the highly parameterized deep network. Data augmentation

has been shown to improve the performance of deep learning models due to

obtaining a more comprehensive training set to help close the generalization

gap [186, 187]. For the JHH cohort, we subsampled the time series data using

a continuous sliding window to create 25 distinct new training similarity ma-

trices for each subject. Our evaluation strategy remained otherwise consistent

and relies on the full connectivity matrix.

Table 4.8 shows the localization performance, where the second row for

each task corresponds to the augmented dataset. Overall, we observe similar

performance with and without data augmentation, as highlighted by the lack

of significant differences. However, we do observe smaller deviations with

using augmentation, likely due to having more training samples. Ultimately,
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this experiment gives us confidence that the MT-GNN method effectively

mines information from the original data and is probably not overfitting on a

small dataset.

4.3.4 Model analysis experimental results

In this section, we summarize the supplementary results associated with our

MedIA paper. These extra experiments test the robustness and generalizability

of our proposed multi-task GNN. We conduct a confounder analysis experi-

ment, which assesses the performance of our model against various potential

experimental confounders, such as the size of the tumor present. Then we

conduct various model optimization experiments such as increasing model

capacity or adding dropout to the model to assess how commonly used deep

learning techniques for model optimization effects performance. Finally, as a

proof-of-concept comparison, we include performance on localization using

the healthy HCP dataset with the artificially created tumor. Taken together,

our results highlight the efficiency and performance strength of our model.

4.3.4.1 Confounder analysis

Confounders, or extraneous variables that can affect the outcome of an ex-

periment, can reduce the reliability of deep learning algorithms. There is

existing work that aims to develop confounder free models applied to medical

imaging [188]. Our next experiment is to assess model performance while ac-

counting for certain potential confounders such as language laterality, tumor

size, age, and gender. We include this experiment to observe any correlation
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Table 4.9: Gender confounder analysis.

Task Male TPR Male AUC Female TPR Female AUC P-value

Language .74± .013 .75± .031 .76± .016 .76± .026 .52
Finger .85± .017 .84± .029 .84± .017 .83± .019 .42
Foot .82± .031 .79± .032 .81± .039 .83± .019 .37

Tongue .80± .019 .81± .027 .81± .018 .79± .021 .33

between the confounders and model performance.

We assess model performance (both AUC and TPR for all four tasks)

against four separate confounders, language laterality, tumor size, age, and

gender to observe if there is a strong correlation between performance and

the confounding variables. Here, laterality refers to a quantitative measure

between -1 and 1 that describes handedness of the subject, and the same 10

fold-CV evaluation was used. The performance metrics are based on the same

repeated 10-fold CV splits used in the paper. Likewise, we separated the test-

ing performance based on gender and used a t-test to determine significance

of model performance on men vs. women. We include the gender analysis

table in and correlation plots with associated lines of best fit and p-values for

the quantitative confounders.

Table 4.9 shows the gender analysis performance, where each task has a

p-value greater than 0.05, indicating no significant change in performance.

Figs.4.15-4.17 shows 8 separate plots of model AUC and TPR performance

across all four tasks using tumor size and age as the respective confounding

variables. SFig. 3 shows the AUC and TPR for just the language task against

language laterality. The p-values were calculated from the correlation coeffi-

cient between the confounder and model performance, where the line of best

117



Figure 4.15: Tumor size vs. AUC and TPR for each task
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Figure 4.16: Age vs. AUC and TPR for each task
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Figure 4.17: Language laterality index vs. language AUC and TPR.

fit is shown in red. As shown by p > 0.05, there is no significant correlation

between any of the confounders and model performance for any of the four

tasks.

4.3.4.2 Model optimization: model augmentation

One common strategy in deep learning is to construct an architecture that

overfits to the training data and then use regularization tricks, such as dropout,

to close the generalization gap on a separate validation set. Figs.4.18-4.20

show training (blue) and validation (orange) curves for the task-specific TPR

with the original model across three different scales of the Craddocks atlas

(N = 318, N = 384, N = 432). The dotted black line represents the main JHH

results from the manuscript using the N = 384 atlas. We can observe that

the original model does not fully overfit to the training data, as all four blue

curves do not saturate at 1.

To arrive at a model that will overfit the training data, we increased ca-

pacity of the original model by increasing the number of feature maps in the

convolutional layer and adding two fully-connected (FC) layers. Specifically,

we increased M from 8 to 16, increased H1 from 27 to 50 and added two FC
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Figure 4.18: Task-specific TPR for N = 318 atlas with original model. We observe that
the training TPR (blue) does not saturate at 1.

Figure 4.19: Task-specific TPR for N = 384 atlas with original model. We observe that
the training TPR (blue) does not saturate at 1.

121



Figure 4.20: Task-specific TPR for N = 432 atlas with original model. We observe that
the training TPR (blue) does not saturate at 1.

layers of sizes H3 = 25 and H4 = 20. The overfit model is shown in Fig.4.21.

As shown in Figs.4.22-4.24, the model presented in Fig.4.21 overfits to the

training data, as each training curve saturates at around 1.

4.3.4.3 Model optimization: adding dropout

Though the model in Fig. 4.21 fits the training data well, it performs poorly

when applied to unseen test data. Now that we have identified a model

with enough capacity to fit the training data, our next goal is to decrease the

generalization gap. To do this, we employ dropout with p = 0.5 in between

each hidden layer of the model except for after the E2E layer. Across three

different scales of the Craddocks atlas, Figs.4.25-4.27 show the training (blue)

and validation (orange) curves for the overfit model with dropout. The black

dashed line indicates the original model performance on the N = 384 atlas.
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Figure 4.21: Higher capacity model used for model optimization experiment.

Figure 4.22: Task-specific TPR for N = 318 atlas with higher capacity model, where
training (blue) saturates at 1 but validation (orange) decreases.
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Figure 4.23: Task-specific TPR for N = 384 atlas with higher capacity model, where
training (blue) saturates at 1 but validation (orange) decreases.

Figure 4.24: Task-specific TPR for N = 432 atlas with higher capacity model, where
training (blue) saturates at 1 but validation (orange) decreases.
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Figure 4.25: Task-specific TPR for N = 318 atlas with higher capacity model and
dropout. The validation accuracy is lower than that of the original model.

We observe that the validation is consistently lower than the black dashed

line, indicating that the original model in the manuscript has the best testing

performance to unseen data.

4.3.4.4 Healthy HCP experiment

The work presented in the original manuscript treats eloquent cortex detec-

tion for tumor patients as a three-class classification problem, where tumor

nodes are given their own class (i.e. not healthy and not belonging to the

eloquent cortex). Removing the tumor class makes this a two-class classifica-

tion problem, as each parcel is considered as either belonging to the eloquent

cortex or not. Therefore, the MT-FC layers are now of size N × 2 Other than

the last MT-FC layers, we keep the layer dimensions consistent. To prevent

biasing our hyperparameter selection, we once again use 10-fold CV on the
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Figure 4.26: Task-specific TPR for N = 384 atlas with higher capacity model and
dropout. The validation accuracy is lower than that of the original model.

Figure 4.27: Task-specific TPR for N = 432 atlas with higher capacity model and
dropout. The validation accuracy is lower than that of the original model.
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separate healthy HCP2 dataset for hyperparameter selection, resulting in

δl = (1.94, 0.54) and δm = (1.33, 0.54).

We use a 10 repeated 10-fold CV evaluation strategy, where fold mem-

bership is different for each CV. Once again, we compare the MT-GNN with

a multi-class linear SVM, a RF classifier, and a fully-connected neural net-

work (FC-NN). The FC-NN hyperparameters were selected via 10-fold CV

on the healthy HCP2 dataset as well and were set to be δl = (2.04, 0.44) and

δm = (1.52, 0.44). Table 4.10 shows the eloquent class true positive rate (TPR),

AUC, and FDR corrected p-value for the associated t-score comparing AUC’s

from the MT-GNN with the baseline methods. We observe that our model

outperforms each baseline at each task. Compared to the results presented

in Table 4.3, we observe that each method performs better, likely due to the

absence of the simulated tumor, which disrupted healthy connections in these

subjects. The performance gains from the MT-GNN to the baselines are slightly

higher than those in Table 4.3, shown by even smaller p-values.

4.3.5 Qualitative results

We present a novel multi-task deep learning framework to identify language

processing and motor sub-regions in brain tumor patients using rs-fMRI

connectivity. In comparison to baseline methods, our model achieves higher

and statistically significant region-based localization performance on both a

synthetic and real world clinical dataset. We show that our model can recover

clinically challenging bilateral language cases when trained on unilateral cases.

Our ablation study further demonstrates the value of the multi-task portion
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Table 4.10: Mean plus or minus standard deviation for eloquent class TPR and AUC
for the HCP cohort (100 subjects).

Task Method Eloquent TPR AUC p-value
Language MTGNN 0.70± 0.011 0.72± 0.009

FCNN 0.64± 0.02 0.66± 0.017 3.7e-51
RF 0.35± 0.034 0.55± 0.032 5.1e-100
SVM 0.40± 0.026 0.53± 0.019 ≈ 0

Finger MTGNN 0.84± 0.013 0.84± 0.007
FCNN 0.78± 0.013 0.75± 0.012 7.6e-106
RF 0.44± 0.03 0.59± 0.026 1.6e-243
SVM 0.42± 0.021 0.53± 0.014 ≈ 0

Foot MTGNN 0.86± 0.01 0.82± 0.012
FC-NN 0.75± 0.014 0.74± 0.013 2.7e-73
RF 0.44± 0.027 0.59± 0.028 4.2e-100
SVM 0.52± 0.022 0.52± 0.013 ≈ 0

Tongue MTGNN 0.82± 0.011 0.80± 0.008
FC-NN 0.77± 0.011 0.74± 0.011 3.7e-35
RF 0.45± 0.027 0.58± 0.031 3.1e-155
SVM 0.58± 0.021 0.55± 0.012 ≈ 0

of our network. Finally, we evaluate the robustness of our method, including

varying the functional parcellation used, corrupting the tumor segmentations,

performing data augmentation, and sweeping our weighted cross entropy

loss hyperparameter for detecting the language class.

We observe that including the specialized convolutional layers aids in

identifying patterns within the eloquent cortex distribution. To assess whether

our network learns reproducible patterns, we visually inspected the weights

with the highest E2E filter magnitudes. In this manner, we can assess which

network features are considered the most important. Fig.4.28 shows one exam-

ple of a language connectivity hub that our model consistently identifies on

the JHH dataset. We observe that this hub is lateralized on the left hemisphere,

which is in line with the bulk of the JHH training data. Fig. 4.29 shows a
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Figure 4.28: An example of a reproducible left-hemisphere only connectivity hub
identified by our E2E filter when trained on the JHH dataset. We observe the nodes
implicated resemble the activations in the language networks.

Figure 4.29: An example of a reproducible language network hub found in both
hemispheres, when the MT-GNN is trained on the HCP dataset. The HCP story
comprehension task is designed to target symmetric areas, which is captured in the
identified language hub.

symmetric language network hub that is consistently found during the HCP

experiments. This network is bilateral because the HCP task is designed to

target symmetrical areas of the anterior temporal lobe (ATL) while the JHH

task is not. Though the network has many layers responsible for feature

extraction, we conjecture that the MT-GNN performance gains relative to the

FC-NN baseline are likely due to these reproducible connectivity hubs, which

aid the downstream classification task. However, as deep learning models

can lack interpretability, we emphasize that our speculation is heuristic and

should be taken with a grain of salt.

To highlight our localization performance, Fig.4.30 illustrates the correct
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Figure 4.30: From (L-R) we show coronal, axial and saggital views of correct (blue)
and incorrect (red) prediction by our model for the eloquent cortex in a challenging
inferior frontal gyrus tumor case.

(blue) and false positive (red) detections by our MT-GNN in a patient with a

large tumor in the inferior frontal gyrus. These results are aggregated across

all four task branches of the model. We observe perfect sensitivity for the

motor cortex localization (no false negative detections) and high accuracy for

language despite the anatomical lesion.

4.4 Conclusion

In [36], we have demonstrated a GNN approach to identify the language

and motor areas of eloquent cortex in brain tumor patients using rs-fMRI

connectivity. Our model learns the resting-state functional signature of both

the language and motor network within this tumor cohort by leveraging

specialized convolutional filters that encode edge-node relationships within

similarity matrices. With higher AUC for eloquent cortex detection, we prove

that the features extracted from our GNN are more informative for this task

than standard graph theoretic features and features extracted from a MLP. For

language, we show that our model can correctly identify bilateral language
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networks even when trained on only unilateral network cases.

Then, in [37], we extend the work to perform multi-task learning, which

shares the network parameters among all four tasks for both cohorts. Our

method shows a substantial improvement in a threefold manner: (1) we save

a large number of parameters, which is essential when working with smaller

clinical datasets, (2) we find a shared latent representation of the eloquent

cortex functional systems, and (3) we reduce training time by a factor of

three. Highlighted by the ablation study, we observe that the single GNN

(SGNN) cannot localize the eloquent regions as well as the MT-GNN. Due to

our multi-branch loss function, our model has access to more training data

compared to the SGNN case. Also, compared to the SGNN, our network finds

a shared latent representation that models the complex interactions between

the eloquent cortex that eventually helps with simultaneous classification.

In comparison to baseline methods, our model achieves higher and statis-

tically significant region-based localization performance on both a synthetic

and real world clinical dataset. We show that our model can recover clinically

challenging bilateral language cases when trained on unilateral cases. Our

ablation study further demonstrates the value of the multi-task portion of

our network. We evaluate the robustness of our method, including varying

the functional parcellation used, corrupting the tumor segmentations, per-

forming data augmentation, and sweeping our weighted cross entropy loss

hyperparameter for detecting the language class. We explored different poten-

tial confounders’ effect on model performance, various model optimization
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strategies, and performance on the healthy HCP data. We observe no statis-

tical significance in the correlation coefficients for each of the confounders.

Regarding model optimization, we show confidence in the original model to

generalize well to unseen testing data, as the overfit model or overfit model

with dropout does not generalize as well. The healthy HCP result shows our

method can identify localized functional subsystems of the eloquent cortex in

healthy rs-fMRI scans. Finally, we showed qualitative results associated with

our model, such as localization outputs on a challenging case and a feature

analysis plotted on the brain.
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Chapter 5

Eloquent cortex localization:
dynamic connectivity and attention
models

5.1 Introduction

In this chapter of the thesis, we present the work we have done on eloquent

cortex localization that builds upon chapter 4, specifically with the use of

dynamic connectivity analysis and various deep learning attention models.

There is growing evidence in the field that functional connectivity patterns are

not static, but evolve over time. In particular, studies have shown that individ-

ual functional systems are more strongly present during specific intervals of

the rs-fMRI scan [189, 190]. The models presented in Chapter 4 of this thesis

only make use of static connectivity, and thus are ignoring important temporal

information that could aid in localization. Several studies have leveraged

these dynamic connectivity patterns for classification. For example, the work

in [97] uses a long-short term memory (LSTM) cell to learn time dependen-

cies within the rs-fMRI to discriminate patients with autism from controls.

133



More recent work by [191] and [124] has shown that combining static and

dynamic connectivity can achieve better patient versus control classification

performance than either set of features alone. However, these works focus on

group-level discrimination. We will leverage similar principles in this chapter

to classify ROIs within a single patient.

We introduced a brief overview of attention models in chapter 2 of this

thesis. Attention is a powerful mechanism that employs neural networks

to hone in on the most salient or important part of the features or input

to aid in the downstream task. In this chapter, we will not only explore

dynamic connectivity analysis, but also explore attention models through the

context of dynamic connectivity (temporal attention). Recent work in the deep

learning literature has introduced the idea of spatial attention, which mimics

information processing in the human visual system. For example, a 2D spatial

attention model learns where in the image to focus, thus improving the quality

of the learned representations [192]. The models presented in this chapter will

sequentially add various attention models to improve localization.

5.1.1 Contributions

We present the work that we published in the Machine Learning for Clinical

Neuroimaging (MLCN) workshop [38] as a part of MICCAI 2020 and our

information processesing in medical imaging (IPMI) 2021 paper [39].

First, we propose a novel multi-task deep learning framework that uses

both convolutional nerual networks (CNNs) and an LSTM attention network

to extract and combine dynamic connectivity features for eloquent cortex
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localization. The final stage of our model employs multi-task learning (MTL)

to implicitly select the relevant time points for each network and simultane-

ously identify regions of the brain involved in language processing and motor

functionality. Our model finds a shared representation between the cognitive

networks of interest, which enables us to handle missing data. This coupling

also reduces the number of model parameters, so that we can learn from lim-

ited patient data. We evaluate our framework on rs-fMRI data from 56 brain

tumor patients while using task fMRI activations as surrogate ground-truth

labels for training and testing. Our model achieves higher localization accura-

cies than a variety of baseline techniques, thus demonstrating its promise for

preoperative mapping.

We then develop a spatiotemporal attention model to localize eloquent

cortex from dynamic whole-brain rs-fMRI connectivity matrices. Unlike a

2D image, our “spatial” field corresponds to salient interactions in connec-

tivity data, captured via graph-based convolutional filters. Our multi-scale

spatial attention model pools three levels of granularity to amplify important

interactions and suppress unnecessary ones. Then, our temporal attention

mechanism selects key intervals of the dynamic input that are most relevant for

either language or motor localization. Our model operates on a fine resolution

parcellation and can handle missing training labels. We use t-fMRI activations

as ground truth labels and validate our framework on rs-fMRI data from 100

subjects in the publicly available Human Connectome Project (HCP) [137]

with artificially-inserted tumors as well as 60 subjects from an in-house dataset.

Our model uniformly achieves higher localization accuracies than competing

135



baselines. Our attention mechanisms learn interpretable feature maps, thus

demonstrating the promise of our model for preoperative mapping.

5.2 A Multi-Task Deep Learning Framework to Lo-
calize the Eloquent Cortex in Brain Tumor Pa-
tients Using Dynamic Functional Connectivity

5.2.1 Model

Our framework makes two underlying assumptions. First, while the anatomi-

cal boundaries of the eloquent cortex may shift across individuals, its func-

tional connectivity with the rest of the brain will be preserved [33]. Second, the

networks associated with the eloquent cortex phase in and out of synchrony

across the rs-fMRI scan [193]. Hence, isolating these key time points will help

to refine our localization. Fig. 5.1 illustrates our framework. In the top branch,

we use specialized convolutional filters to capture rs-fMRI co-activation pat-

terns from the dynamic connectivity matrices. In the bottom branch, we use an

LSTM to identify key time points where the language and/or motor networks

are more synchronous. We tie the activations from the LSTM branch of our

model into our MTL classification problem via our specialized loss function.

5.2.1.1 Input Connectivity Matrices

We use the sliding window technique to obtain our connectivity matrices [17].

Let N be the number of brain regions in our parcellation, T be the total number

of sliding windows (i.e., time points in our model), and {Wt}T
t=1 ∈ RN×N

be the dynamic similarity matrices. Wt is constructed from the input time
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Figure 5.1: Top: Specialized convolutional layers identify dynamic patterns that are
shared across the functional systems. Bottom: The dynamic features are input to an
LSTM network to learn attention weights al (language) and am (motor). Right: MTL
to classify the language (L), finger (M1), foot (M2) and tongue (M3) networks.

courses {Xt}T
t=1 ∈ RD×N , where each Xt is a segment of the rs-fMRI obtained

with window size D. The input Wt ∈ RN×N is

Wt = exp

[︄
(Xt)TXt

ϵ
− 1

]︄
(5.1)

where ϵ ≥ 1 is a user-specified parameter that controls decay speed [36]. Re-

garding the tumor, we follow the approach of [36] and treat the corresponding

rows and columns of the simlarity matrix as “missing data" by fixing them to

zero.
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5.2.1.2 Representation Learning for Dynamic Connectivity

Our network leverages the specialized convolutional layers developed in [169]

for static analysis. The edge-to-edge (E2E) layer in Fig. 5.1 acts across rows

and columns of the input matrix Wt. Mathematically, let f ∈ {1, · · · , F} be

the E2E filter index, r f ∈ R1×N be the row filter f , c f ∈ RN×1 be the column

filter f , b ∈ RF×1 be the E2E bias, and ϕ(.) be the activation function. For

each time point t the feature map H f ,t ∈ RN×N is computed as follows:

H f ,t
i,j = ϕ

(︄
N

∑
n=1

r f
nWt

i,n + c f
nWt

n,j + b f

)︄
. (5.2)

As previously discussed, the E2E filter output H f ,t
ij for edge (i, j) extracts

patterns associated with the neighborhood connectivity of node i and node

j. The edge-to-node (E2N) filter in Fig. 5.1 is a 1D convolution along the

columns of each feature map. Mathematically, let g f ∈ RN×1 be E2N filter f

and p ∈ RF×1 be the E2N bias. The E2N output h f ,t ∈ RN×1 from input H f ,t

is computed as

h f ,t
i = ϕ

(︄
N

∑
n=1

g f
nH f ,t

i,n + p f

)︄
. (5.3)

Following the convolutional layers in the top branch, we cascade two fully-

connected (FC) layers to combine these learned topological features for our

downstream multi-task classification. In the bottom branch, we use a node-to-

graph (N2G) layer to extract features that will be input to our LSTM network.

The N2G filter acts as a 1D convolution along the first dimension of the E2N

output, effectively collapsing the node information to a low dimensional

representation for each time point. Let k f ∈ RN×1 be N2G filter f and
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d ∈ RF×1 be the bias. The N2G filter gives a scalar output q f ,t for each input

h f ,t by

q f ,t = ϕ

(︄
N

∑
n=1

k f
n · h

f ,t
n + d f

)︄
. (5.4)

5.2.1.3 Dynamic Attention Model

Per time point, we define qt = [q1,t · · · qF,t] and feed the vectors {qt}T
t=1 into

an LSTM module to learn attention weights for our classification problem. The

LSTM adds a cell state to the basic recurrent neural network to help alleviate

the vanishing gradient problem, essentially by accumulating state information

over time [194]. LSTMs have demonstrated both predictive power for rs-fMRI

analysis [97, 124] and the ability to identify different brain states [195]. We

choose d = 2 as the output dimension, and perform a softmax over each

column of the LSTM output to get the attention vectors al ∈ RT×1 (language)

and am ∈ RT×1 (motor). These attention vectors provide information on

which input connectivity matrices are more informative for identifying the

language or motor networks. The attention model outputs are combined with

the classifer during backpropogation in our novel loss function.

5.2.1.4 Multi-task Learning with Incomplete Data

The black blocks in Fig. 4.6 show the multi-task FC (MT-FC) layers, where we

have four separate branches to identify the language, finger, foot, and tongue

areas. Up until this point, there has been an entirely shared representation

of the feature weights at each layer. Let Lt, Mt
1, Mt

2, and Mt
3 ∈ RN×3 be the

output of the language, finger, foot, and tongue MT-FC layers, respectively,
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at time t. The N × 3 matrix represents the region-wise assignment into one

of three classes; eloquent, tumor, and background. As in [36], we introduce

the tumor as its own learned class to remove any bias these regions may have

introduced to the algorithm.

Following our previous models, we use a modified version of the risk-

sensitive cross-entropy loss function [179, 36], which is designed to handle

membership imbalance in multi-class problems. Let δc be the risk factor

associated with class c. If δc is small, then we pay a smaller penalty for

misclassifying samples that belong to class c. Due to a training set imbalance,

we set different values for the language class (δl
c) and motor classes (δm

c )

respectively. Let Yl, Ym1 , Ym1 , and Ym3 ∈ RN×3 be one-hot encoding matrices

for the ground-truth class labels of the language and motor subnetworks.

Notice that our framework allows for overlapping eloquent labels, as brain

regions can be involved in multiple cognitive processes. Our loss function is

the sum of four terms:

LΘ({Wt}T
t=1, Y) =

N

∑
n=1

3

∑
c=1

[︂
−δl

c log
(︂

σ
(︂ T

∑
t=1

Lt
n,c · al,t

)︂)︂
Yl

n,c⏞ ⏟⏟ ⏞
Language Loss Ll

−δm
c log

(︂
σ
(︂ T

∑
t=1

Mt
1n,c · am,t

)︂)︂
Ym1

n,c⏞ ⏟⏟ ⏞
Finger Loss Lm1

−δm
c log

(︂
σ
(︂ T

∑
t=1

Mt
2n,c · am,t

)︂)︂
Ym2

n,c⏞ ⏟⏟ ⏞
Foot Loss Lm2

−δm
c log

(︂
σ
(︂ T

∑
t=1

Mt
3n,c · am,t

)︂)︂
Ym3

n,c⏞ ⏟⏟ ⏞
Tongue Loss Lm3

]︂
(5.5)

where σ(·) is the sigmoid function. Our loss in Eq.5.5 allows us to handle
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missing information during training. For example, if we only have ground-

truth labels for some of the functional systems, then we can freeze the other

branches and just backpropagate the known loss terms. This partial backprop-

agation will continue to refine the shared representation, thus maximizing the

amount of information mined from our training data. Note that our formu-

lation is agnostic to the length of the rs-fMRI scan (i.e. T), which is useful in

clinical practice.

5.2.1.5 Implementation details and baselines

We implement our network in PyTorch using the SGD optimizer with weight

decay = 5× 10−5 for parameter stability, and momentum = 0.9 to improve

convergence. We train our model with learning rate = 0.002 and 300 epochs,

which provides for reliable performance without overfitting. We used D = 45

and a stride length of 5 for the sliding window. We specified F = 25 feature

maps in the convolutional branch, and 2 layers in our LSTM. The LeakyReLU

with slope = −0.1 was used for ϕ(.). Using cross validation, we set the

cross-entropy weights to δm = (1.5, 0.5, 0.2), and δl = (2.25, 0.5, 0.2).

We compare the performance of our model against three baselines:

1. PCA + Multi-class linear SVM on dynamic connectivity matrices (SVM)

2. A multi-task GNN on static connectivity (MT-GNN)

3. A multi-task ANN with LSTM attention model (MT-ANN)

The first baseline is a traditional machine learning SVM approach to our prob-

lem. The MT-GNN operates on static connectivity and does not have an LSTM
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module. We include the MT-GNN to observe the difference in performance

with and without using dynamic information. The MT-ANN maintains the

same number of parameters as our model but has fully-connected layers in-

stead of convolutional layers. Therefore, the MT-ANN does not consider the

network organization of the input dynamic connectivity matrices.

5.2.2 Experimental Results

5.2.2.1 Dataset and localization results

We evaluate the methods on rs-fMRI data from 56 brain tumor patients who

underwent preoperative mapping at our institution. These patients also un-

derwent t-fMRI scanning, which we use to derive pseudo ground-truth labels

for training and validation. Our dataset includes the three motor and two lan-

guage paradigms described in Chapter 2, which also includes preprocessing

details.

We used the Craddocks atlas to obtain N=384 brain regions [59]. Tumor

boundaries for each patient were manually delineated by a medical fellow

using the MIPAV software package [128]. An ROI was determined as be-

longing to the eloquent class if a majority of its voxel membership coincided

with that of the t-fMRI activation map. Tumor labels were determined in

a similar fashion according to the MIPAV segmentations. A general linear

model implemented in SPM8 was used to obtain t-fMRI activation maps.

We use 8-fold cross validation (CV) to quantify our eloquent cortex local-

ization performance. Table 5.1 reports the eloquent per-class accuracy and the

area under the receiver operating characteristic curve (AUC) for detecting the
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Table 5.1: Class accuracy, overall accuracy, and ROC statistics. The number in the
first column indicates number of patients who performed the task.

Task Method Eloquent Overall AUC
Language (56) SVM 0.49 0.59 0.55

MT-ANN 0.70 0.71 0.70
MT-GNN 0.73 0.74 0.74
Proposed 0.85 0.81 0.80

Finger (36) SVM 0.54 0.61 0.57
MT-ANN 0.73 0.75 0.74
MT-GNN 0.87 0.86 0.84
Proposed 0.88 0.85 0.84

Foot (17) SVM 0.58 0.63 0.60
MT-ANN 0.72 0.77 0.74
MT-GNN 0.82 0.79 0.79
Proposed 0.86 0.85 0.82

Tongue (39) SVM 0.54 0.60 0.58
MT-ANN 0.74 0.76 0.73
MT-GNN 0.85 0.81 0.82
Proposed 0.87 0.83 0.84

eloquent class on the testing data. Each MT-FC branch has separate metrics.

Our proposed method has the best overall performance, as highlighted in bold.

Even with attention from the LSTM layer, we observe that a fully-connected

ANN still is sub-par for our task compared to using the specialized E2E, E2N,

and N2G layers. Furthermore, our performance gains are most notable when

classifying the language and foot networks. The former is particularly relevant

for preoperative mapping, due to the difficulties in identifying the language

network even with ECS [20, 196]. We observe that the inclusion of dynamic

connectivity alongside the LSTM for temporal attention performs better than

the MT-GNN model from chapter 4, suggesting that approaching this problem

with dynamic connectivity analysis is favorable.
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Figure 5.2: Language (L) and motor (R) attention weights for all patients.

5.2.2.2 Attention weight analysis and bilateral identification

As a side experiment, we plotted the attention weights recovered for each

of the 56 subjects during the test phase. We did this to observe if there was

a trend in the magnitude of the weights over time, and that the attention

mechanism is the key novelty associated with this work. Fig.5.2 shows the

language (left) and motor (right) attention vectors for all patients across time.

We observe that both systems phase in and out, such that when one system

is more active, the other is less active. This pattern lends credence to our

hypothesis that identifying the critical intervals is key for localization. Hence,

our model outperforms the static MT-GNN.

Finally, we test whether our model can recover a bilateral language net-

work, even when this case is not present in the training data. Here, we trained

the model on 51 left-hemisphere language network patients and tested on the

remaining 5 bilateral patients. Our model correctly predicted bilateral parcels

in all five subjects. Fig.5.3 shows ground truth (blue) and predicted language

maps (yellow) for two example cases. The mean language class accuracy for

these five cases was 0.72. This is slighly lower than reported in Table 5.1 likely
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Figure 5.3: Ground truth (Blue) and predicted (Yellow) language labels for two
subjects.

due to the mismatch in training information.

5.3 A Multi-Scale Spatial and Temporal Attention
Network on Dynamic Connectivity to Localize
The Eloquent Cortex in Brain Tumor Patients

In this section, we review the main findings from our IPMI 2021 paper, which

incorporates a spatial attention mechanism alongside temporal attention mech-

anism to improve localization. We use multiple scales of spatial attention

which operates on graph-based features extracted from the connectivity ma-

trices, thus honing in on the inter-regional interactions that collectively define

the eloquent cortex. This is the last model we developed for eloquent cortex

localization, which builds upon our previous model with the addition of

spatial attention and extra data for validation.

5.3.1 Model

Our framework begins with the same assumptions as our previous models,

that is, the resting-state connectivity of the eloquent cortex with the rest of
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Figure 5.4: Top: Convolutional features extracted from dynamic connectivity are
refined using a multi-scale spatial attention block. Bottom: The dynamic features are
input to an ANN temporal attention network to learn weights zl (language) and zm

(motor). Right: Multi-task learning to classify language (L), finger (M1), tongue (M2),
and foot (M3) subnetworks, where each subnetwork is a 3-class classification which
is shown in red, white, and blue respectively on segmentation maps.

the brain is identifiable and consistent among subjects. Adding a layer of

complexity, the eloquent cortex represents a relatively small portion of the

brain. This is the motivation for our spatial attention mechanism, i.e., to zone

in on the key connectivity patterns. Furthermore, the networks associated

with the eloquent cortex will likely phase in and out of synchrony across the

rs-fMRI scan [38]. Our temporal attention mechanism will track these changes.

Fig. 5.4 shows our overall framework. As seen, we explicitly model the

tumor in our dynamic similarity graph construction and feed this input into a

deep neural network which uses specialized convolutional layers designed to

handle connectome data [169].

Once again, we use the sliding window technique to construct our dynamic

inputs [17]. Let N be the number of brain regions in our parcellation, T be
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Figure 5.5: Our multi-scale spatial attention model extracts features from max pool
and average pool features along the channel dimension. We use separate convolu-
tional filters with increasing receptive field size to extract multi-scale features, and
use a 1× 1 convolution and softmax to obtain our spatial attention map S̄. This map
is element-wise multiplied along the channel dimension of the original E2E features.

the total number of sliding windows (i.e., time points in our model), and

{Wt}T
t=1 ∈ RN×N be the dynamic similarity matrices. Wt is constructed

from the normalized input time courses {Xt}T
t=1 ∈ RG×N, where each Xt is

a segment of the rs-fMRI obtained with window size G. Formally, the input

Wt ∈ RN×N is

Wt = exp
[︁
(Xt)TXt − 1

]︁
. (5.6)

where the tumor is handled similarly among all models.

5.3.1.1 Multi-scale Spatial Attention on Convolutional Features

Our network leverages the specialized convolutional layers developed in [169]

for feature extraction on each of the dynamic inputs. The edge-to-edge (E2E)

filter (pink in Fig. 5.4) acts across rows and columns of the input matrix Wt.

Mathematically, let d ∈ {1, · · · , D} be the E2E filter index, rd ∈ R1×N be
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the row filter d, cd ∈ RN×1 be the column filter d, b ∈ RD×1 be the E2E bias,

and ϕ(.) be the activation function. For each time point t the feature map

Ad,t ∈ RN×N is computed as follows:

Ad,t
i,j = ϕ

(︂
Wt

i,:(r
d)T + (cd)TWt

:,j + bd

)︂
. (5.7)

The E2E filter output Ad,t
ij for edge (i, j) extracts information associated with

the connectivity of node i and node j with the rest of the graph. We use

the same D E2E filters {rd, cd} for each time point to standardize the feature

computation.

Fig.5.5 illustrates our multi-scale spatial attention model. The attention

model acts on the E2E features and implicitly learns “where" informative

connectivity hubs are located for maximum downstream class separation. The

multi-scale setup uses filters of different receptive field sizes to capture various

levels of connectivity profiles within the E2E features [197]. Following [192],

we apply an average pooling and max pooling operation along the feature

map axis and concatenate them to generate an efficient feature descriptor.

Mathematically,

Havg =
1

DT

D

∑
d=1

T

∑
t=1

Ad,t (5.8)

is the N × N average pool features and

Hi,j
max = max

d,t
Ad,t

i,j (5.9)

is the N × N max pool features. Note that we extract the maximum and

average activations across all feature maps and time points simultaneously. We

then apply a multi-scale convolution to this feature descriptor, which implicitly
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identifies the deviation of the maximum activation from the neighborhood

average, thus highlighting informative regions to aid in downstream tasks

[198].

We apply three separate convolutions with increasing filter sizes to the

concatenated feature descriptor to obtain different scales of resolution of our

analysis. The convolution outputs S1, S2 and S3 ∈ RN×N are computed using

a 3× 3, 7× 7, and 11× 11 kernel, respectively, on the concatenated maps[︁
Havg; Hmax

]︁
. The convolutions include zero padding to maintain dimension-

ality. Each successive convolutional filter has an increasing receptive field size

to help identify various connectivity hubs within the E2E layer. We obtain

our spatial attention map S̄ ∈ RN×N with an element-wise softmax operation

on the weighted summation, derived using a 1× 1 convolution with bias b,

across the three scales;

S̄ = Softmax
(︃ 3

∑
i=1

wiSi + b
)︃

. (5.10)

This weighted combination is designed to highlight salient hubs in the net-

work which appear across different spatial scales. The softmax transforms our

attention into a gating operation, which we use to refine our convolutional fea-

tures Ad,t by element-wise multiplication with S̄. Let ⊙ denote the Hadamard

product. The refined features Âd,t ∈ RN×N are computed as

Âd,t
= Ad,t ⊙ S̄. (5.11)

Finally, we condense our representation along the column dimension by

using the edge-to-node (E2N) filter [169]. Our E2N filter (brown in Fig. 5.4)
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performs a 1D convolution along the columns of each refined feature map to

obtain region-wise representations. Mathematically, let the E2N output be

ad,t ∈ RN×1 from input Âd,t. Again, we apply the same E2N filters to each

time point. At a high level, the E2N computation is similar to that of graph-

theoretic features, such as node degree. The E2N outputs are fed into both the

temporal attention model (bottom branch of Fig. 5.4) and the multi-task node

classifier (right branch of Fig. 5.4).

5.3.1.2 Temporal Attention Model

We use a 1D convolution to collapse the region-wise information into a low

dimensional vector for our temporal attention network. Let kd ∈ RN×1 be the

weight vector for filter d and j ∈ RD×1 be the bias across all filters. A scalar

output qd,t for each input ad,t is obtained

qd,t = ϕ
(︂
(kd)Tad,t + jd

)︂
. (5.12)

The resulting T × D matrix [qd,t]T is fed into a fully-connected layer of two

perceptrons with size D to extract our temporal attention weights. We obtain

one language network attention vector zl ∈ RT×1 and one motor network

attention vector zm ∈ RT×1, which learn the time intervals during which the

corresponding eloquent subnetwork is more identifiable. The FC attention

model is more flexible than a recurrent architecture and can be easily trained

on small clinical datasets (<100 subjects). We observed that the FC attention

shows a good trade-off between representation and robustness to training

with a limited sample size.
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5.3.1.3 Implementation details and baselines

We backpropagate the same loss function as Eq. 5.5, which uses a weighted

cross-entropy term, four different branches, and a dot product between the

attention vectors and node predictions. We implement our network in PyTorch

using the SGD optimizer with weight decay = 5× 10−5 for parameter stability,

and momentum = 0.9 to improve convergence. We train our model with

learning rate = 0.005 and 140 epochs, which provides for reliable performance

without overfitting. We specified D = 50 feature maps in the convolutional

branch. The LeakyReLU with slope = −0.1 was used for ϕ(.).

We compare the performance of our model against three baselines:

1. Random forest on dynamic connectivity matrices (RF)

2. A fully-connected network with temporal attention (FC-tANN)

3. Same as proposed without spatial attention (w/o sp. attn.)

The first baseline is a traditional machine learning RF approach to our prob-

lem. The FC-tANN maintains the same number of parameters as our model

but has fully-connected layers instead of convolutional layers. Finally, we

compare against our same architecture without spatial attention to observe

the performance gain of focusing on different neighborhoods. To avoid

biasing performance, we selected the hyperparameters using a develop-

ment set of 100 subjects downloaded from the Human Connectome Project

(HCP). The final settings are: δm = (1.48, 0.44, 0.18), δl = (2.16, 0.44, 0.18)

for proposed, δm = (1.57, 0.42, 0.22), δl = (2.31, 0.42, 0.22) for FC-tANN and

δm = (1.51, 0.46, 0.19), δl = (2.22, 0.46, 0.19) for w/o sp. attn.
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Figure 5.6: Ground truth (blue) and predicted (yellow) for a bilateral language subject.

5.3.2 Experimental Results

5.3.2.1 Dataset and localization results

We evaluate the methods on rs-fMRI data from an additional HCP cohort [137]

in which we artificially insert “fake tumors” by zeroing out entries of the con-

nectivity matrix, and an in-house brain tumor dataset. Similarly to previous

experiments, we use the t-fMRI acquired to act as ground truth labels. All pre

processing details are in chapter 2 of this thesis. We used the Schaefer atlas to

obtain N = 1000 brain regions [199], which is on par with the resolution of

eloquent areas we are trying to detect. An ROI was determined as belonging

to the eloquent class if a majority of its voxel membership coincided with

that of the t-fMRI activation map. Tumor labels were determined in a similar

fashion according to the MIPAV segmentations.

We use 10-fold cross-validation to evaluate each method. Table 1 shows the

performance metrics for detecting the eloquent class. In the second column,

the number next to the task refers to the number of subjects whom we have

training labels. As highlighted in bold, our proposed method outperforms the

baseline algorithms in nearly all cases. We observe that the spatial attention

model improves the specificity by improving the ratio of true negatives to
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Table 5.2: Overall accuracy, and ROC statistics. The number in the second column
indicates number of patients who performed the task.

Dataset Task Method Accuracy Sens. Spec. F1 AUC
HCP Language (100) RF 0.58 0.32 0.55 0.42 0.5

FC-tANN 0.65 0.61 0.58 0.59 0.64
w/o Sp. Attn. 0.77 0.73 0.68 0.69 0.72

Proposed 0.83 0.79 0.81 0.82 0.80
Finger (100) RF 0.70 0.53 0.67 0.64 0.56

FC-tANN 0.76 0.70 0.72 0.73 0.72
w/o Sp. Attn. 0.87 0.83 0.78 0.80 0.86

Proposed 0.91 0.86 0.85 0.85 0.88
Foot (100) RF 0.67 0.48 0.65 0.62 0.53

FC-tANN 0.79 0.77 0.69 0.73 0.76
w/o Sp. Attn. 0.86 0.86 0.83 0.84 0.85

Proposed 0.90 0.87 0.86 0.86 0.88
Tongue (100) RF 0.70 0.46 0.68 0.63 0.53

FC-tANN 0.75 0.72 0.68 0.72 0.73
w/o Sp. Attn. 0.81 0.83 0.80 0.81 0.81

Proposed 0.89 0.87 0.85 0.85 0.86
In-
house

Language (60) RF 0.65 0.40 0.66 0.59 0.53
FC-tANN 0.78 0.76 0.70 0.71 0.73

w/o Sp. Attn. 0.84 0.85 0.74 0.79 0.82
Proposed 0.93 0.91 0.85 0.87 0.91

Finger (36) RF 0.67 0.43 0.67 0.61 0.55
FC-tANN 0.76 0.75 0.69 0.71 0.77

w/o Sp. Attn. 0.88 0.88 0.79 0.82 0.85
Proposed 0.91 0.88 0.85 0.84 0.89

Foot (17) RF 0.68 0.49 0.65 0.60 0.56
FC-tANN 0.79 0.73 0.68 0.72 0.75

w/o Sp. Attn. 0.86 0.86 0.78 0.80 0.82
Proposed 0.89 0.87 0.83 0.84 0.86

Tongue (39) RF 0.69 0.38 0.70 0.64 0.52
FC-tANN 0.79 0.78 0.71 0.74 0.76

w/o Sp. Attn. 0.86 0.85 0.77 0.81 0.84
Proposed 0.90 0.87 0.82 0.84 0.87

false positives. Our performance gains are most notable regarding the lan-

guage network, which is arguably the most challenging rea to localize during

preoperative mapping. Fig. 5.6 shows the ground truth (blue) and predicted

(yellow) for all four systems in a challenging bilateral language subject, with

both the proposed and w/o spatial attention methods. The model without spa-

tial attention overpredicts the right-hemipshere language nodes, and misses

various parts of the motor strip. Our model can localize functional regions
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Figure 5.7: Left: Heat map for the nodes with highest total spatial attention for a
unilateral and a bilateral language subject. Right: Temporal attention weights for
language and motor networks. The black arrows indicate networks phasing in and
out with each other.

right on the tumor boundary that the baseline method misses as well, which

is relevant for clinical practice.

5.3.2.2 Feature Analysis

To better understand how the attention models improve the localization per-

formance, Fig. 5.7 illustrates the spatial attention (left) and temporal attention

weights (right) for our in-house dataset. These plots are generated by sum-

ming across the rows of the attention map S̄ and plotting the top ten nodes in

one unilateral language and one bilateral language case. The spatial attention

model is accurately able to capture right hemisphere activation in the bilateral

case while correctly omitting this region in the unilateral case. This lateraliza-

tion ability may be why localization performance increases for the language

network. On the right-hand side of Fig.5.7, we show the temporal attention

weights for both language and motor networks across all patients and time.

The language and motor networks phase in and out at different times, which

improves localization by identifying important time intervals within the scan
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for each network.

5.4 Conclusion

In this portion of the thesis, we extend upon Chapter 4 by improving the

localization performance of our network by considering two main modelling

additions: (1) dynamic connectivity with temporal attention models, and

(2) spatial attention models to refine the convolutional features and hone

in on specific spatially continuous hubs. We present a novel deep learning

framework that leverages specialized convolutional layers, multi-scale spa-

tial attention, temporal attention, and multi-task learning to identify critical

regions of the eloquent cortex in tumor patients using dynamic resting-state

connectivity. We validate our method on a real in-house dataset and a syn-

thetic dataset to show generalizability of our method. We outperform machine

and deep learning baselines by a large margin. Finally, we show the spatial

and temporal attention features, which can be important biomarkers for si-

multaneous language and motor network identification.

This concludes the portion of the thesis dedicated to eloquent cortex local-

ization. Through ideation from current literature and deep learning trends

and experimentation, we improved localization performance dramatically

from our first static GNN presented in [36] to our last spatiotemporal attention

model applied to dynamic connectivity [39]. We assessed robustness with a

vast number of experiments on our static MT-GNN presented in our MEDIA

paper [37]. Future work includes exploring the multi-modal inclusion of

DTI imaging to incorporate structural connectivity pathways to the overall
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network analysis.
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Chapter 6

Epileptogenic Zone localization

6.1 Introduction

In this chapter, we present our work on automated epileptogenic zone (EZ)

localization from rs-fMRI connectivity. Epilepsy is one of the most common

neurological disorders, affecting around 50 million people worldwide, and

is linked to a fivefold increase in mortality [200]. Epilepsy onset often occurs

in childhood, and approximately one third of all patients have a medication

refractory course that is associated with a disabling cumulative effect on

neurocognitive development, lost productivity for the family, and increased

societal and healthcare costs [201]. Surgical treatment is a safe and effective

therapeutic approach for medication refractory epilepsy, that can provide

seizure freedom and improved quality of life [202]. However, surgical candi-

dacy and treatment outcomes are dependent on accurate localization of the

EZ as defined by clinical, radiographic (magnetic resonance imaging, MRI)

and physiological (electroencephalography, EEG) features [203]. Long-term

treatment failures following surgery most commonly occur due to inaccurate
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identification and resection of the EZ. Invasive monitoring using implanted

intracranial electrodes can provide more accurate EZ localization that can help

plan treatment, but is associated with surgical risks [29]. Hence an accurate

EZ localization hypothesis is the foundation for effective and safe treatment

in epilepsy [204, 205], and is the most important prognostic determinant for

long term treatment outcomes.

6.1.1 Automated Methods for EZ Localization

Over the past two decades, there has been an increasing focus on automated

methods for EZ localization. These methods are most often based on elec-

trographic (EEG) or neuroimaging (structural MRI) modalities and can help

reduce interpretative differences and delays in clinical reviews.

Automated methods for EEG localization have largely focused on improv-

ing the spatial resolution of the EEG sensors by deconvolving the signals

into current dipoles or distributed sources at the millimeter scale [206, 207].

Going one step further, EEG data can be combined with noninvasive mag-

netoencephalography (MEG) for improved source estimation [208, 209]. Re-

cent studies have demonstrated the translational promise of such methods.

However, from a modeling standpoint, these inverse solvers require careful

annotations of the seizure interval and are sensitive to physiological noise

and the underlying head model [210, 211]. More importantly, they rely on

high-density recordings of >50 EEG/MEG channels. From a logistical stand-

point, the current standard-of-care for long-term EEG monitoring is the 10-20
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electrode placement system [212], which contains fewer than 20 EEG chan-

nels distributed across the scalp. This resolution is insufficient for accurate

and fine-grained inverse source estimation. Moreover, only 27% of epilepsy

centers in the United States have access to and regularly utilize MEG [213].

Thus, while inverse source mapping remains a valuable direction of research

with tremendous potential for presurgical evaluation, these methods are not

amenable to most clinical workflows. Recently, Temple University Hospital

(TUH) released a large public EEG dataset, which has spurred interest in

seizure type classification [214, 215, 216], where the goal is to predict the

epilepsy subtype from scalp EEG. While this task provides more information

than seizure detection and is less reliant on human annotations than inverse

source localization, the categories (focal, generalized, complex partial, absence,

etc.) are too broad to accurately pinpoint the EZ.

In contrast to EEG, automated methods for MRI localization aim to identify

epileptogenic lesions including Focal Cortical Dysplasias (FCDs), that are

often difficult to radiographically identify on clinical imaging. Traditionally,

these methods were implemented as a two-stage procedure. First, image-

based features are extracted from the MRI data, such as cortical thickness,

intensity, texture, asymmetry, and voxel-based morphometry [217, 218, 219,

220, 221]. Second, each voxel is classified as normal or FCD using statistical or

machine learning algorithms. While these methods work well on large FCD

cohorts, they tend to be unreliable for nonlesional patients [222]. In addition,

epileptogenic lesions are diverse and can involve cortical, subcortical white

matter [223, 224] and vascular abnormalities [225, 226, 227], which are better
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suited to other data modalities [228, 229, 230].

6.1.2 Connectivity as a Biomarker for Epilepsy

Recent neuroimaging studies of epilepsy have implicated global brain net-

work changes in seizure generation and disease progression. Accordingly,

epilepsy is increasingly viewed as a network disorder that affects regional and

global connectivity [223, 231, 232, 233, 234]. Diffusion MRI (d-MRI) assesses

white matter properties based on free water diffusion [235] and informs us on

the structure of brain networks [236]. In contrast, resting-state functional MRI

(rs-fMRI) quantifies the temporal synchrony between brain regions by mea-

suring changes in low frequency BOLD fluctuations. Alterations in structural

and functional network properties have been linked to disease onset [237],

duration [238], and treatment outcomes [231, 232] in epilepsy. For example,

our group has investigated functional topology in subjects with epilepsy [239],

demonstrating functional reorganization with a shift of network hubs to the

contralateral hemisphere in temporal onset epilepsy [240].

Support Vector Machine-based analysis can discriminate network features

in temporal epilepsy and healthy control subjects. In addition, neural con-

nectivity patterns can help predict neuropsychological measures that assess

language and memory function. Notably, global connectome changes in

epilepsy are associated with a decrement in neurocognitive phenotype [241].

While promising, these connectivity studies are restricted to predefined struc-

tural and functional systems and careful patient subtyping (e.g., temporal

lobe epilepsy). In addition, the results are correlative and do not quantify how
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well the biomarkers would generalize to new patients. Recently, a few seminal

studies have explored prospective EZ localization from rs-fMRI connectivity,

which is presented in Section 2.3.2.2 in this thesis (background). As a recap,

ICA based methods are not ideal due to lack of being automated and requiring

manual intervention.

6.1.3 Contributions

We present the findings published in our IEEE transactions in biomedical en-

gineering (TBME) paper [40] and our international symposium of biomedical

imaging (ISBI) 2023 paper [41]. In [40], we introduce the first deep learning

model for EZ localization using interictal rs-fMRI connectivity. The underly-

ing assumption of our work is that the chronic and recurrent seizure activity

causes subtle and distributed changes in functional connectivity across the

brain. In contrast to rule-based approaches, we used supervised learning to

automatically mine and leverage complex relationships in the rs-fMRI data for

robust and generalizable EZ identification. Our model, which we call DeepEZ,

takes as input a whole-brain connectivity graph, where nodes correspond to

regions in our brain parcellation and edges denote the functional connectivity

between regions. From here, DeepEZ uses graph convolutional networks

(GCNs) [242, 243] to implicitly track information flow along expected anatom-

ical pathways and fully-connected layers to classify each node (i.e., region) as

belonging to the EZ or not. We encode anatomical information using d-MRI

tractography, which is often viewed as the anatomical substrate for functional

signaling in the brain [244, 245].
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DeepEZ also incorporates the findings of previous works via an asym-

metry term in the loss function to encourage lateralized predictions and a

learned subject-specific bias to mitigate environmental confounds. We validate

DeepEZ on a heterogeneous dataset of 14 pediatric epilepsy patients collected

at the University of Wisconsin (UW) Madison. We demonstrate the DeepEZ

outperforms the ICA methods of [31, 80] and ablated versions of the network.

We also rigorously evaluate the sensitivity of DeepEZ to parcellation size, the

number of network layers, hyperparameter tuning, and data augmentation.

Taken together, our results highlight the promise of using rs-fMRI connectivity

as a complementary source of information to localize the EZ in presurgical

epilepsy patients.

Recent work in rs-fMRI literature has increasingly leveraged the dynamic

evolution of connectivity information to improve predictive performance [17].

For example, we used an LSTM network as a temporal attention module to

improve localization of eloquent cortex in brain tumor patients. The method

of [246] uses a transformer network applied to dynamic functional connectivity

(dFC) to predict the brain age of patients with Alzheimer’s disease. The next

model presented after DeepEZ builds upon DeepEZ via incorporating dFC

and attention mechanisms.

In [41], we present the first deep learning model to localize the EZ in

focal epilepsy patients based on dFC. Our deep network architecture uses

an anatomically-regularized graph convolutional network (GCN) for feature

extraction. From here, a transformer network learns a temporal attention

vector, which identifies relevant time windows of the rs-fMRI scan that aid
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in localization. Following [142], we train our network entirely on simulated

data derived from the Human Connectome Project (HCP), and we test it on

a clinical epilepsy dataset from the University of Wisconsin Madison. We

demonstrate the significantly improved performance of our framework, as

compared to both ablated versions of our model and the DeepEZ method. Our

results highlight the promise of using rs-fMRI connectivity for preoperative

EZ localization.

6.2 DeepEZ: A Graph Convolutional Network for
Automated Epileptogenic Zone Localization from
Resting-State fMRI Connectivity

DeepEZ is designed under the assumption that there are subtle but widespread

connectivity patterns associated with the EZ. Inspired by the rs-fMRI liter-

ature, we use a weighted similarity matrix to capture whole-brain rs-fMRI

connectivity [36, 164, 165]. Our DeepEZ architecture exploits the topological

properties of rs-fMRI connectivity data via a set of graph convolutions. To

integrate biological knowledge, we use structural connectivity, derived from

d-MRI tractography, to define the underlying graph, thus emphasizing signal

propagation along anatomical pathways. DeepEZ includes a subject-specific

detection bias to account for patient differences and improve generalizability.

Finally, we incorporate a clinically relevant asymmetry term into our loss

function to provide crucial lateralization information.
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Figure 6.1: The overview of our model schematic. First, we apply a parcellation to the
rs-fMRI and construct the subject specific functional connectivity information X. Our
network contains two graph convolution layers which include the adjacency matrix
A. The network uses an artificial neural network (ANN) for node classification. To
improve detection of the EZ class, we added a separate ANN to learn a subject-specific
bias term s, which is added to the node-wise predictions E. Our model classifies each
ROI from the parcellation as either belonging to the EZ or not.

6.2.1 Model

6.2.1.1 Graph Convolution Network

Fig. 6.1 provides a graphical overview of our DeepEZ framework. Formally,

let N be the number of brain regions in our parcellation and T be the number

of time points for a rs-fMRI scan. We define mi ∈ RT×1 as the average time

series extracted from region i, normalized to have zero mean and unit variance.

Following the work of [36], we construct the input functional connectivity

matrix as follows:

X = exp
[︁
MTM− 1

]︁
(6.1)

where M ∈ RT×N aggregates the region-wise time series mi as columns.

Eq. 6.1 ensures non-negative input values, such that anti-correlated regions

have connectivity close to zero, and highly correlated regions have connectiv-

ity close to one.

As shown in Fig. 6.1, DeepEZ processes the input data via two spatial
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graph convolutions. Let A ∈ RN×N be a binary adjacency matrix used for

spatial graph filtering [94]. As described in the previous section, we use

d-MRI tractography to construct A. In this case, an entry Aij = 1 denotes

an anatomical pathway connecting regions i and j. Each graph convolution

produces an activation map Hl ∈ RN×Fl , where l ∈ {1, 2} denotes the layer

number. The learnable parameters in each graph convolution are a weight

matrix Wl ∈ RFl×Fl+1 and a constant bias bl ∈ R1×Fl+1 . The activation maps

are generated via the layer propagation rule:

H1 = ϕ
(︂

AXW1 + b1

)︂
(6.2)

H2 = ϕ
(︂

AH1W2 + b2

)︂
(6.3)

The multiplication by A in Eqs. (6.2)-(6.3) aggregates the region-wise repre-

sentation based on their direct neighborhood [94].

6.2.1.2 Subject-Specific Detection Bias

We treat EZ identification as a two-class classification problem, where each

region i classified as either belonging to the EZ or not. Here, the output H2 of

our GCN cascade is fed through a fully-connected layer to obtain E ∈ RN×2

E = ϕ
(︂

H2W f c

)︂
. (6.4)

Similar to the graph convolutions, the weight matrix W f c ∈ RF2×2 is learned

during training.

One challenge with our clinical rs-fMRI dataset is heterogeneity, both in
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the EZ locations and in the data acquisition procedures (e.g., scanner type).

To improve detection of the EZ class, we introduce a novel concept known as

subject-specific detection bias (SSDB), which helps to mitigate variation in the

input data distributions. The SSDB s ∈ R1×2 is learned via a simple 2-layer

artificial neural network (ANN) and is added to each row of E to obtain the

final predictions. Mathematically, let {Gl, cl} denote the weight matrix and

constant offset for each layer l ∈ {1, 2} of the ANN. Our subject-specific bias

term s is computed as follows:

s = ϕ
(︂

G2ϕ
(︂

G1E + c1

)︂
+ c2

)︂
. (6.5)

An illustration of the effect of the SSDB on predicting whether a region n

belongs to the EZ class is shown in the bottom right of Fig. 6.1. Empirically,

we observe that the bias improves the sensitivity of detecting the EZ class.

Following the SSDB addition, a softmax function is applied and each region is

classified as belonging to the EZ or not using a max operator.

6.2.1.3 EZ Classification via Weighted Class Prediction and Contralateral
Loss Function

There exists a large class imbalance in our dataset, as on average 7.3 % of

the regions lie within the resection boundary that denotes the EZ. Since the

GCN layers are designed to operate upon a whole-brain connectivity matrix,

traditional data augmentation techniques would not solve our class imbalance

problem. Following the work of [39, 37], we train our model with a modified

Risk-Sensitive Cross-Entropy loss function [179], which is designed to handle

a class membership imbalance. Formally, let δi be the risk associated with
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class i. If δi is large, then we pay a larger penalty for misclassifying samples

belonging to class i.

Beyond the class imbalance, it has been shown that contralateral areas of

the brain have high rs-fMRI correlation [247, 248], often causing them to be

treated similarly in downstream analyses. In contrast, we expect the EZ bto

be lateralized [249, 31]. We leverage this asymmetry in the second term of our

DeepEZ loss function by specifying that regions contralateral to the predicted

EZ should be classified as normal.

Let Ne denote the nodes that belong to the EZ (labeled without loss of

generality as class #2), and let c(n) denote the contralateral counterpart to

region n. Our training loss function consists of the following two terms:

L = −
N

∑
n=1

2

∑
i=1

δiyn,i log ŷn,i⏞ ⏟⏟ ⏞
Weighted Cross Entropy

−λ
1

Ne
∑

n∈Ne

(︁
ŷn,2 − ŷc(n),2

)︁
⏞ ⏟⏟ ⏞

EZ Contralateral Term

. (6.6)

The quantities ŷn,i in Eq. 6.6 denote the DeepEZ prediction for the baseline

(i = 1) and EZ (i = 2) classes at each region n. As seen, the first term of Eq. 6.6

accounts for the class imbalance, and the second term enforces hemispheric

asymmetry in the final EZ predictions. Finally, λ balances the contributions of

the two loss terms.

6.2.1.4 Implementation Details

We implement DeepEZ in PyTorch [250] using the Adam optimizer with

weight decay (wd) and ϵ for regularization. The LeakyReLU (x) = max(0, x) +

0.1·min(0, x) activation function is applied at each hidden layer of the network
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Table 6.1: Hyperparameters determined via cross validation on a separate cohort
drawn from the HCP dataset.

Parameter Value Parameter Value
(δ1, δ2) (0.29, 1.52) λ 0.017
lr 0.005 Epochs 200
ϵ 1× 10−8 wd 5× 10−5

in Fig. 6.1. A softmax activation is applied at the final layer for region-wise

classification.

To prevent undue bias, we tune the hyperparameters δ1, δ2, λ in Eq. 6.6

and the Adam optimization routine based on 50 subjects drawn from the HCP

dataset. Specifically, we randomly selected a portion of the brain regions in

each subject to denote an “artificial EZ". We then use 10-fold cross validation to

fix the hyperparameters used in all experiments. For δ1 and δ2, we performed

a coarse grid search from 0− 10 in increments of of 10−1 until we found a

suitable range of performance. We then performed a finer grid search in

increments of 10−2. For the parameter λ, we performed a fine grid search over

0− 1 in increments of 10−3. Table 6.1 reports the resulting parameter values

for our final DeepEZ implementation.

6.2.2 Experimental results

6.2.2.1 Dataset and baseline algorithms

Our dataset consists of preoperative functional and postoperative structural

MRI scans from 14 pediatric subjects with focal epilepsy that underwent a EZ

resection procedure at UW Madison. Preoperative Rs-MRI (rs-fMRI) data and

postoperative T1-weighted structural images were acquired. We manually
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delineate the resection zone and use this boundary to define pseudo ground

truth EZ labels for training and evaluation after applying the Brainnetomme

atlas. All preprocessing details and a summary of seizure outcome of patients

is found in Section 2.5.3 of this thesis. The GCNs in DeepEZ rely on a structural

connectivity profile. To ensure consistency across subjects, we derive the graph

from d-MRI tractography of 50 subjects from the Human Connectome Project

(HCP) dataset [137]. The d-MRI data for each subject was preprocessed using

the pipeline of [143] to obtain individual structural connectivity matrices

based on the Brainnetome atlas. We compare DeepEZ against three competing

methods from the literature and seven ablated versions of our model:

• ICA approach of [31] (ICA1)

• ICA approach of [80] (ICA2)

• The BrainNetCNN [169] adopted for region-wise classification (BN-

CNN)

• Ablation #1: No SCT and No SSDB (GCN)

• Ablation #2: No SSDB (GCN-SCT)

• Ablation #3: No SCT (GCN-SSDB)

• Ablation #4: DeepEZ with an identity matrix replacing A (GCN-I)

• Ablation #5: DeepEZ with patient-specific d-MRI matrices replacing A

(GCN-Asubj)

• Ablation #6: DeepEZ with a randomly sampled matrix replacing A

(GCN-Arand)
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• Ablation #7: DeepEZ with topology preserved matrix replacing A (GCN-

Atop)

The first baseline is a traditional machine learning approach for EZ local-

ization described in [31] Specifically, the ICA method extracts features from

each independent component (IC) and then classifies each IC as belonging

to the EZ or not via a linear support vector machine. The IC farthest from

the boundary is selected as the final EZ for that patient. We chose this ICA

baseline because it performed the best in the meta-analysis of [251], which

compares seven different ICA methods for EZ localization using rs-fMRI. The

second baseline described in [80] employs a screening process where ICs are

sequentially discarded based on rules such as contralateral correlation and

power spectrum density and the remaining ICs are considered belonging to

the EZ class. We note that the original method is not fully automated. For ex-

ample, visual inspection was used on a subject that had multiple independent

components (ICs) that survived the rule-based screening process. In an effort

to provide fair comparison across methods, we automate the work of [80] by

combining the predictions of any ICs that pass the rule-based screening.

The third baseline is a modified version of the BrainNetCNN model de-

veloped in [169], which was originally designed to regress cognitive scores

from structural connectivity matrices. The BrainNetCNN architecture uses

cross-shaped convolutional filters to leverage topological relationships in con-

nectivity data. We have modified the final layers of the original architecture to

perform region-wise classification input rather than patient-level phenotypic

prediction.
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Our next three baselines focus on the EZ contralateral term (SCT) and the

subject specific detection bias (SSDB) in our DeepEZ framework. As seen,

we systematically ablate the components to determine the performance gain

derived from each one. The last four baselines use the same architecture and

loss function but vary the anatomical connectivity matrix A in the spatial

graph convolutions. The GCN-I baseline replaces A with the identity matrix,

effectively removing the anatomical regularization from our model. The

GCN-Asubj baseline replaces A with personalized graphs computed from the

patient-specific d-MRI. Due to variations in the data and tractography outputs,

the edges in Asubj vary across patients, i.e., the graphs are slightly mismatched.

The GCN-Arand baseline replaces A with a randomly-sampled symmetric

matrix Arand. Finally, the GCN-Atop baseline replaces A with a matrix that

reflects the same geometric topology as A. To obtain Atop, we first bin the

edge weights from the unthresholded version of A and then randomly shuffle

edges within each bin [252]. We then threshold to obtain Atop. Similar to the

proposed model, we kept Arand and Atop fixed across patients within each CV

fold. For robustness, we run a repeated 7-fold CV procedure for all methods,

and we sample the matrix Arand 50 times and report the average statistics.

6.2.2.2 EZ Detection Performance

We evaluate the performance of each method using a repeated 7-fold CV setup,

where each fold contains 2 subjects and each repeated sampling (i.e., run) en-

sures different fold membership. Fig. 6.2 shows the evaluation workflow of

our experiments. We report the mean and standard deviation performance

across 90 unique runs for the following metrics: sensitivity (TPR), specificity
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Figure 6.2: We use repeated 7-fold CV for model training and testing. We report the
mean and standard deviation of the sensitivity, specificity, AUC, and accuracy across
runs. For each baseline, we report the FDR corrected p-value that DeepEZ achieves
significantly higher AUC.

(TNR), accuracy, and area under the receiver operating characteristic curve

(AUC). To demonstrate a statistically significant performance gain, we per-

form a t-test on the AUC metric comparing each baseline with DeepEZ. The

test statistic corrects for dependencies between the resampled folds, as out-

lined in [151]. Using this statistic, we compute a p-value and apply FDR

correction. Since the ICA2 method is based on deterministic rules and not

learned by a classifier, the results are the same across CV folds. Thus, we

report only a single average across patients for each metric, as opposed to a

mean± standard deviation. We use a one-sample t-test to determine statistical

significance for ICA2.

Table 6.2 summarizes the EZ detection performance for each method. We

observe that DeepEZ achieves the highest sensitivity, precision, F1 and AUC.

While the specificity is slightly lower than the GCN-AX baselines that swap

out the HCP matrix A, the performances are within a standard deviation.

Minor variations in accuracy can also be attributed to the class imbalance

between EZ and non-EZ regions. The performance gains of DeepEZ are

172



Table 6.2: Mean plus or minus standard deviation for sensitivity, specificity, precision,
F1-score, accuracy, and AUC. The t-score compares the AUC of DeepEZ with each
baseline; we also note the corresponding FDR corrected p-value. We use a two-sample
t-test based on the repeated 7-fold CV for all models, except ICA2; here, we use a
one-sample t-test.

Method Sensitivity Specificity Precision F1 Accuracy AUC t-score p-value
ICA1 0.071± 0.034 0.78± 0.045 0.09± 0.035 0.08± 0.029 0.57± 0.033 0.52± 0.023 22.26 < 10−10

ICA2 0.25 0.7 0.31 0.28 0.69 0.6 7.13 < 10−10

BN-CNN 0.099± 0.048 0.72± 0.036 0.11± 0.046 0.11± 0.027 0.78± 0.015 0.56± 0.035 11.84 < 10−10

GCN 0.17± 0.051 0.78± 0.032 0.26± 0.039 0.20± 0.038 0.81± 0.032 0.62± 0.035 7.66 < 10−10

GCN-SCT 0.22± 0.059 0.81± 0.036 0.29± 0.042 0.25± 0.041 0.83± 0.029 0.65± 0.038 5.13 8.6× 10−7

GCN-SSDB 0.31± 0.056 0.83± 0.031 0.43± 0.048 0.36± 0.039 0.85± 0.03 0.70± 0.034 2.15 0.023
GCN-I 0.27± 0.061 0.86± 0.034 0.39± 0.037 0.31± 0.028 0.87± 0.041 0.68± 0.033 3.69 3.3× 10−4

GCN-Asubj 0.28± 0.046 0.87± 0.029 0.37± 0.039 0.32± 0.034 0.89± 0.031 0.70± 0.026 2.03 0.031
GCN-Arand 0.33± 0.041 0.86± 0.031 0.41± 0.042 0.37± 0.037 0.88± 0.034 0.71± 0.028 1.91 0.046
GCN-Atop 0.35± 0.039 0.86± 0.035 0.47± 0.038 0.4± 0.035 0.88± 0.036 0.72± 0.019 1.63 0.078
DeepEZ 0.4± 0.044 0.85± 0.033 0.52± 0.039 0.45± 0.041 0.88± 0.034 0.73± 0.031

underscored by the AUC t-test, where we observe a statistically significant

(p < 0.05) improvement for DeepEZ over all baseline methods except for GCN-

Atop method. This result highlights that the performance gain of DeepEZ can

be largely attributed to the graph topology (e.g., small-world connectivity)

when fusing the rs-fMRI connectivity information across layers.

We note that the competing ICA1 and BN-CNN methods are not well-

suited to the task, possibly due to the heterogeneity of our clinical cohort.

While ICA2 performs much better than ICA1, it cannot match the perfor-

mance of DeepEZ. One issue with the rule-based ICA methods is that the

selection criteria on one dataset may not generalize well to another. While an

end-to-end model such as DeepEZ can easily be retrained on new data, modi-

fying a rule-based approach is nontrivial. The ablated models perform slightly

better than ICA1, ICA2 and BN-CNN, but still not on par with DeepEZ. In fact,

we observe a notable performance gain using the SSDB, which suggests that a

subject-specific approach may be useful to overcome heterogeneity in clinical

prediction tasks. There is a similar performance gain when incorporating the
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contralateral loss term (SCT), which emphasizes the asymmetry associated

with our problem. We observe a marked decline in sensitivity when replac-

ing the d-MRI connectivity matrix A with identity. This suggests that using

information about anatomical pathways is crucial for EZ localization. Inter-

estingly, we also note a performance decline when using the patient-specific

d-MRI information encoded in Asubj. We hypothesize that this is due to the

inconsistency of the edges across patients, particularly in our small dataset.

This hypothesis is supported by the results for GCN-Arand and GCN-Atop,

which performs slightly better than GCN-Asubj. Recall that, while random,

the graphs in GCN-Arand and GCN-Atop are fixed. We find that model train-

ing is more stable when the same A matrix is used for each patient. Finally,

GCN-Atop performs the best out of the baselines, implying a benefit to using

topological information.

Fig. 6.3 illustrates axial views of the ground truth (red) and predicted

(blue) labels for all 14 patients across each method considered. Each row

represents a patient (numbered 1-14 in Table 6.2) and each column represents

one method. As shown, DeepEZ localizes correct regions in most patients

while omitting non-EZ regions. An example of this can be see for Patient 1 (first

row), where DeepEZ aligns well with the ground truth labels, while avoiding

the spurious predictions by the GCN-X methods. Furthermore, DeepEZ is

the only method to localize the resections in Patient 3 and Patient 10, while

not incurring incorrect contralateral predictions. We observe that the ICA and

BNCNN methods are poorly suited for the task and rarely produce correct

predictions. Overall, we observe similar predictions made by the DeepEZ and
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Figure 6.3: Axial view of ground truth (red) and model predictions (blue) for all
patients in the UW Madison dataset. Each row corresponds to a single patient,
organized from 1–14 according to Table 6.2. Model names are displayed at the top of
each column.
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GCN-Atop methods, likely due to the preserved network topology. Overall,

we observe that DeepEZ achieves a good balance between correct localization

while avoiding false positives.

An interesting result of this work is that using subject-specific anatomical

connectivity information does not improve localization performance. In fact,

the sensitivity, precision, F1 and AUC are worse than when the graph A is

fixed according to the normative HCP dataset. There are three different facets

to this result. From an imaging standpoint, there is more variability in our

UW Madison dataset due to scanner differences (e.g., 1.5T versus 3T), patient

age (9–18 years), and heterogeneous pathologies. This variability may lead

to “incorrect" tractography outputs, as compared to the underlying neuro-

physiology. In contrast, the HCP acquisition sequences have been carefully

validated on a standardized cohort, and the preprocessing pipelines have been

optimized for the data. Consequently, the matrices A may reflect long-range

and distributed anatomical pathways more accurately than Asubj. From an

optimization standpoint, the edges are inconsistent across the patient-specific

matrices Asubj. This inconsistency can lead to instability during training, par-

ticularly given the small sample size (S = 14). Future work will include

comparing the influence of A and Asubj as the dataset grows in size. Finally,

from a neurobiological standpoint, our robustness study in Section III-B sug-

gests that two GCN layers is optimal for EZ localization. Thus, DeepEZ only

fuses information across two-stage pathways. Given that we operate at the

region level, the HCP template may be sufficient for this operation without

needing patient-specific connectivity.
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In line with the above observation, our experiments demonstrate that

replacing the anatomical connectivity matrix with Atop achieves similar per-

formance. This result underscores the importance of network topology over

individual anatomical connections. It also suggests that DeepEZ is robust

to variations in the anatomical connectivity matrix used for A. Thus, we

conclude that acquiring rs-fMRI data alone is sufficient for EZ localization,

which reduces the logistical burden of integrating DeepEZ into the clinical

workflow.

We note that there is considerable prior work that uses ICA for EZ lo-

calization in rs-fMRI [31, 253, 254]. The meta-analysis of [251] determined

that among these, the machine learning approach of [31] (baseline 1 in this

work) achieves the best odds ratio. However, as reported in Table 6.2, this

method fails to localize the EZ for our cohort. One possible reason is that the

handcrafted features chosen in [31] may not generalize well to different co-

horts. Another drawback of this method is that it selects just one independent

component as the EZ, when there might exist multiple epileptic sources across

overlapping components [255]. In fact, we observed in our experiments that

the independent components did not overlap well with the surgical resection

boundaries used as the pseudo ground truth EZ. We also note that since this

method performs ICA at the subject level, there is substantial variability in the

component locations across patients. In contrast, DeepEZ uses a well-defined

functional parcellation, which allows for both a fine resolution analysis and

group-level concordance in the region definitions. We also demonstrate that

DeepEZ is robust to the choice of parcellation, which gives the user more
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Figure 6.4: Boxplots for sensitivity (left) and AUC (right) across each method. The
proposed DeepEZ has the best performance across methods considered.

flexibility when applying the framework to clinical data.

Fig. 6.4 shows boxplots of the sensitivity (left) and AUC (right) among all

methods. We include this figure to show the spread of performance based

on fold membership. As described in the main text, we observe statistically

higher sensitivity and AUC for the proposed DeepEZ method. Fig. 6.5 shows

three views of ground truth (red) and DeepEZ predictions (blue) of four

representative patients. Based on clinical evaluation, the EZ for these patients

are categorized as left temporal, left extra-temporal, right temporal and right

extra-temporal, as organized from top to bottom in the figure. We note that

DeepEZ can accurately localize the EZ in the second and fourth patients with

minimal false positives. For the firth and third patients, DeepEZ exhibits high

sensitivity with spurious contralateral predictions.

6.2.2.3 Feature analysis

Finally, we visualize the most commonly learned graph convolutional filters of

DeepEZ. Accordingly, we extracted the first-stage graph convolution weight

matrices W1 ∈ R246×120 learned during each of our repeated 7-fold CV runs.
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Figure 6.5: Ground truth (red) and DeepEZ predictions (blue) for four representative
patients. The patients have the EZ located in left temporal, left extra-temporal, right
temporal and right extra-temporal from top to bottom respectively.
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Figure 6.6: Regions implicated by the two most commonly learned convolutional
filters in DeepEZ. One filter (L) identifies the temporal lobe while the other (R)
identifies the frontal regions. The distribution of these regions mimic the EZ labels in
our dataset.

Each column of W1 represents a different convolutional filter that can be

visualized by plotting the magnitude of the weights back on to the brain.

We first aligned the columns of W1 across the repeated CV folds using a

Procrustes algorithm and then masked each column to identify the top ten

regions implicated by that filter. We identified two activation patterns that

were consistently learned by DeepEZ. Fig. 6.6 shows these filters projected

onto the cortical surface, where the color denotes the average activation across

repeated CV folds.

We note that one filter (left) implicates regions within the temporal lobe

while the other filter (right) implicates the regions associated with the frontal

lobe. These patterns mimic the distribution of EZ labels in our UW Madi-

son dataset. Thus, in a data-driven manner, DeepEZ focuses its analysis on

stereotypical patterns associated with the EZ.
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6.2.2.4 Assessing Model Robustness

In this experiment section, we assess the robustness of DeepEZ to four aspects

of our experimental setup: (1) the choice of brain parcellation, (2) the number

of GCN layers, (3) the relative weighting δ2 for the EZ class in Eq. 6.6, and (4)

the small dataset size used for model training.

It has been shown that the choice of parcellation can have a tremendous

impact on rs-fMRI analyses [184, 185]. For example, coarse parcellations miti-

gate the effects of noise but can blur subtle effects, whereas fine parcellations

preserve detailed phenomena but can be overwhelmed by environmental

confounds. In addition, the Brainnetome atlas (BNA) used in Table ?? is sym-

metric where each region has a direct contralateral region, which is not the

case with all parcellations. To explore this, we apply DeepEZ using three

different scales of the Craddocks functional parcellation [59]. The Craddocks

atlas was derived using a spectral clustering algorithm on the rs-fMRI data

from healthy subjects. The different scales come from varying the number

of clusters. In this work, we use the N = 178, N = 318, and N = 384 scales,

which include both coarser and finer parcellations than the BNA N = 246

atlas to assess the effect that resolution has on performance. Once again, we

use repeated 7-fold CV to quantify performance.

Table 6.3 reports the accuracy and AUC when applying DeepEZ to each of

the parcellations defined above. The p-values are computed with respect to

the original BNA atlas. To account for the fact that regions in the Craddocks

atlases are not symmetrically defined across the hemispheres, our SCT loss

function considers the region with centroid closest to the contralateral location
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Figure 6.7: Sensitivity (left) and AUC (right) for proposed method while sweeping
δ2 in increments of 0.1. We observe as δ2 increases, sensitivity increases, but AUC
eventually decreases.

Table 6.3: Mean plus or minus standard deviation for accuracy and AUC for different
parcellations. The final column shows the FDR corrected p-values when comparing
the AUCs of the BNA and Craddocks (CC) parcellations.

Atlas Accuracy AUC p-val
BNA-246 0.88± 0.034 0.73± 0.031
CC-178 0.85± 0.037 0.70± 0.032 0.018
CC-318 0.87± 0.038 0.72± 0.039 0.367
CC-384 0.87± 0.035 0.72± 0.031 0.312

as the counterpart c(n) in Eq. 6.6. Based on a p < 0.05 threshold, we only

observe a significant performance difference in AUC with the CC-178 atlas.

This observation suggests that a finer parcellation is better suited for EZ

localization. In contrast, DeepEZ is robust using either the CC-318, CC-384, or

BNA atlas, which suggests model stability across different parcellations.

At a high level, the GCN layers of DeepEZ perform a random walk on

the brain graph defined by the anatomical connections in d-MRI. Our choice

of two GCN layers in DeepEZ can analyze the rs-fMRI connectivity patterns

associated with path lengths ≤ 2 but cannot capture higher-order information.
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Table 6.4: Localization performance as the number of GCN layers is varied. The
t-score compares the AUC of the proposed DeepEZ with each baseline; we also note
the corresponding FDR corrected p-value.

Layers Sensitivity Specificity Precision F1 Accuracy AUC t-score p-value
1 0.09± 0.035 0.93± 0.021 0.12± 0.032 0.1± 0.029 0.91± 0.039 0.55± 0.032 12.04 < 10−10

2 (Proposed) 0.4± 0.044 0.85± 0.033 0.52± 0.039 0.45± 0.041 0.88± 0.034 0.73± 0.031
3 0.27± 0.042 0.87± 0.035 0.38± 0.039 0.32± 0.037 0.88± 0.031 0.70± 0.027 2.01 0.039
4 0.33± 0.039 0.84± 0.029 0.45± 0.041 0.38± 0.029 0.83± 0.028 0.68± 0.029 3.6 4.9× 10−4

To probe this effect, we conduct a robustness experiment in which we vary

the number of GCN layers in DeepEZ and use the repeated 7-fold CV strategy

in Fig. 6.2 to quantify the performance of each method.

Table 6.4 reports the performance across 1–4 GCN layers. We observe that

the proposed architecture (2 GCN layers) achieves the best trade-off between

true positive and false positive detections, as quantified via a t-test on the

AUC. There are two interpretations for this result. First, it appears that the

rs-fMRI connectivity patterns associated with the EZ are the most prominent

at a walk of length of two, with diminishing returns beyond this point. Second,

increasing the number of GCN layers also increases the number of model

parameters, which may lead to overfitting. Taken together, we believe that two

GCN layers balances the trade-off between capturing discriminative patterns

without overfitting on small datasets.

One of the key aspects of DeepEZ is the weighted cross-entropy loss to

handle class imbalance. To probe this effect, we sweep the EZ detection hyper-

parameter δ2 in in increments of 0.1 while keeping the other hyperparameters

fixed. Fig. 6.7 shows the sensitivity (left) and AUC (right) metrics as δ2 varies

over the range [1.1, 2.0]. As expected, sensitivity increases with δ2 due to the

higher penalty for incorrectly classifying EZ regions as baseline. However, the
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Table 6.5: Mean plus or minus standard deviation for sensitivity, specificity, AUC,
and accuracy with and without data augmentation. The final column shows the FDR
corrected p-values for the associated t-score for comparing AUC.

Augmentation Sensitivity Specificity Precision F1 Accuracy AUC t-score p-value
Without 0.4± 0.044 0.85± 0.033 0.52± 0.039 0.45± 0.041 0.88± 0.034 0.73± 0.031
With 0.43± 0.033 0.87± 0.026 0.89± 0.015 0.74± 0.019 −1.28 0.76

AUC metric peaks at 1.5 and steadily decreases, which suggests that DeepEZ

incurs too many false positives at larger values of δ2. We observe relatively

stable performance in both metrics over the range δ2 = [1.4− 1.6]. Finally, we

note that the weighted cross-entropy loss is useful from a clinical perspective,

as it is more important not to miss the EZ regions at this stage of therapeutic

planning for epilepsy.

Data augmentation has been shown to improve the performance of deep

learning models due to providing more information about the underlying

data distribution [186, 187]. Given the small sample size (N = 14), we ex-

plore whether DeepEZ would benefit from data augmentation. Here, we

sub-sampled the time series data using a continuous sliding window to create

10 distinct new training similarity matrices for each subject. Our augmented

dataset contains an order of magnitude more data points (N = 140). Our eval-

uation strategy remained the same as depicted in Fig. 6.2. Table 6.5 reports the

EZ detection performance for DeepEZ with and without data augmentation.

We observe a small performance boost in each metric and smaller standard

deviations when using data augmentation during training. However, we

note that the performance gain in AUC is not statistically significant, as indi-

cated in the last column of Table 6.5. This result demonstrates that DeepEZ

is able to effectively mine the information present in our original dataset for
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generalizable EZ localization.

We have presented DeepEZ, a graph convolutional network on static

connectivity data to localize the EZ in focal epilepsy patients. We have shown

the robustness and overall performance of DeepEZ. Similar to our eloquent

cortex localization work, we extend the DeepEZ model to operate on dynamic

connectivity to improve performance. The next section of this thesis will

summarize the findings presented in [41], where we use a transformer-based

attention mechanism applied to dynamic functional connectivity alongside

data augmentation techniques to improve EZ localization metrics.

6.3 A Deep Learning Framework To Localize the
Epileptogenic Zone From Dynamic Functional
Connectivity Using A Combined Graph Convo-
lutional and Transformer Network

6.3.1 Model

In this work, we present the first automated framework that uses dynamic

functional connectivity from rs-fMRI to localize the EZ across a heterogeneous

epilepsy cohort. Our deep network architecture builds off of DeepEZ and uses

an anatomically-regularized graph convolutional network (GCN) for feature

extraction. From here, a transformer network learns a temporal attention

vector, which identifies relevant time windows of the rs-fMRI scan that aid

in localization. Following [142], we train our network entirely on simulated

data derived from the Human Connectome Project (HCP), and we test it on

a clinical epilepsy dataset from the University of Wisconsin Madison. We
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Figure 6.8: Network overview. Top: We use a multi-modal GCN and fully-connected
layers to obtain node-wise predictions of the EZ over time R. Bottom: Our transformer
and fully-connected layers network extract a temporal attention vector p that selects
specific windows of the dFC input. The attention p is combined with R to obtain the
final EZ predictions.

demonstrate the significantly improved performance of our framework, as

compared to both ablated versions of our model and the method of [40].

Fig. 6.8 shows an overview of our framework. Our method uses a two layer

GCN to obtain intermediate node-wise features over time. These intermediate

features are fed into both a temporal attention network as well as a node-

classifier network for EZ localization. We use the sliding window technique

to generate the dFC inputs to our framework. Formally, let N be the number

of brain regions in our parcellation, T be the number of sliding windows,

and {Xt}T
t=1 be the dFC matrices. Xt ∈ RN×N is computed from a segment

Zt ∈ RN×d of the rs-fMRI time series, where d is the sliding window size.
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6.3.1.1 GCN for feature extraction

The first stage of our model is an anatomically-regularized GCN for feature

extraction. We use diffusion MRI (d-MRI) tractography to construct the binary

adjacency matrix A ∈ RN×N used for graph filtering [94]. In this case, an

entry Aij = 1 denotes an anatomical connection between regions i and j. Let

L = D−
1
2 AD−

1
2 be the normalized graph Laplacian of A, where Dii = ∑j Aij.

Let A ∈ RN×N denote the binary adjacency matrix used for graph fil-

tering [94]. We use d-MRI tractography to construct A. In this case, an

entry Aij = 1 denotes an anatomical connection between regions i and j. Let

L = D−
1
2 AD−

1
2 be the normalized graph Laplacian of A, where Dii = ∑j Aij.

Each layer produces an activation map Hl ∈ RN×Gl , where l ∈ {1, 2} de-

notes the layer number. The learnable parameters in each graph convolution

are a weight matrix Wl ∈ RGl×Gl+1 and a constant bias bl ∈ R1×Gl+1 . The

intermediate activation H1 is generated via the propagation rule:

Ht
1 = ϕ

(︂
LXtW1 + b1

)︂
, (6.7)

with the activation H2 generated likewise from H1.

6.3.1.2 Transformer-Based Temporal Attention

The outputs {Ht
2}T

t=1 of the GCN correspond to intermediate node-level fea-

tures per time point. From here, the temporal attention module leverages the

encoder stage of a transformer network [101], followed by a fully-connected

artificial neural network (ANN). Our transformer employs multi-headed self-

attention (MHA) and feed-forward networks with residual connections to
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process sequential data. Formally, let H′ ∈ RT×NG2 be a flattened version of

{Ht
2}T

t=1. A single encoder layer in the transformer is computed as follows:

C1 = MHA(H′) + H′ C2 = FF(C1) + C1, (6.8)

where the FF(·) operation denotes a feed-forward network.

The MHA(·) function in Eq. 6.8 consists of multiple self-attention (SA)

operations, where each SAi for i ∈ {1 · · · I} is computed as SAi(Vi) = MiVi.

As introduced in [101], the attention mask Mi ∈ RT×T captures the similarity

between a query matrix Qi = Wq
i H′ and a key matrix Ki = Wk

i H′, both of

which are linear functions of the input data:

Mi = Softmax

(︄
QiKT

i√
NG2

)︄
(6.9)

Likewise, the value matrix Vi = Wv
i H′ is also obtained via a linear layer. The

matrices Wq
i , Wk

i , and Wv
i in the above expressions denote the learned weights

for head i.

The self-attention outputs are concatenated across heads and fed through

a linear layer to obtain one MHA operation. The attention mask Mi iden-

tifies which time points have similar representations and scales the output

accordingly. The transformer combines the MHA(·) operation with a residual

connection. The subsequent FF(·) operation consists of two fully-connected

layers plus another residual connection. The encoding procedure in Eq. 6.8

optimizes the mixing across the sequential input features for the downstream

task.

The output of the transformer is fed through two fully-connected layers
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and a softmax function to obtain our temporal attention vector p ∈ RT×1. The

attention p is designed to identify which time points are more relevant for

downstream node classification. Both the intermediate features {H}T
t=1 and

attention vector p appear in the EZ classification stage.

6.3.1.3 Classification and Loss Function

We treat the problem of EZ localization as a region-wise classification problem,

where each region is identified as either belonging to the EZ class or to the

“normal" class. Formally, the intermediate features {H}T
t=1 are fed into a

two-layer ANN to obtain node-wise predictions over time {R}T
t=1, where

Rt ∈ RN×2. Our temporal attention vector p is combined with {R}T
t=1 via an

inner product to obtain a single prediction for each region.

We adopt a modified version of the loss function presented in [40], which

uses a weighted cross-entropy loss and a regularization term to suppress

activations in regions contralateral to the EZ. Let Y ∈ RN×2 be the one-hot

encoded labels, Ne denote the nodes that belong to the EZ class and let c(n)

denote the contralateral counterpart to region n. Our training loss function

consists of the following two terms:

L({Xt}T
t=1, Y) = −

N

∑
n=1

2

∑
i=1

δi log
(︂

σ
(︂ T

∑
t=1

Rt
n,c · pt

)︂)︂
Yn,c⏞ ⏟⏟ ⏞

Weighted Cross Entropy

−λ
1

Ne
∑

n∈Ne

(︂
σ
(︂ T

∑
t=1

Rt
n,2 · pt

)︂
− σ

(︂ T

∑
t=1

Rt
c(n),2 · p

t
)︂)︂

⏞ ⏟⏟ ⏞
EZ Contralateral Term

.

(6.10)

189



6.3.1.4 Data Augmentation for Training

Rs-fMRI studies of focal epilepsy patients are often limited in size. There-

fore, following [142], we train our deep network entirely on augmented data

derived from a neurotypical control dataset. For each training sample, we

augment the healthy rs-fMRI data by first randomly selecting a spatially con-

tinuous neighborhood of voxels to form the EZ and then modifying the time

series at those voxels via one of six noise models: (1) adding normally dis-

tributed noise, (2) adding uniformly distributed noise, (3) adding power-law

noise, (4) adding Brownian noise, (5) adding noise generated by a Levy walk

process, and (6) randomly permuting the time series. Since there is no estab-

lished ground truth for how the EZ affects rs-fMRI, the combination of these

six noise models exposes our network to a broad range of data abnormalities

during training [142]. To our knowledge, our work is the first to use data

augmentation for EZ localization based on rs-fMRI connectivity.

We implement our network in Pytorch [182] using the ADAM optimizer

and a leaky-ReLU activation function with slope = −0.1 between each layer.

To prevent data leakage, all hyperparameters of our network are set using

cross-validation on 100 EZ-augmented subjects from the Human Connectome

Project (HCP) dataset.

6.3.2 Experimental results

6.3.2.1 Datasets and baseline algorithms

Our training data consists of 300 HCP subjects [137]. We generate training

three samples per subject (S = 900 total) by varying the EZ location and/or
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noise model used for data augmentation. We use the Brainnetomme atlas [60]

to define N = 246 cortical and subcortical regions for our analysis. We

construct the adjacency matrix A used in our GCN from d-MRI tractography

of 50 additional HCP subjects. Individual structural connectivity matrices

are generated according to [143]. We average and threshold these matrices to

compute A, used for both training and testing.

Our clinical dataset consists of 14 pediatric patients with focal epilepsy

from the University of Wisconsin (UW) Madison. All preprocessing details

can be found in Chapter 2 of this thesis. As shown in Fig. 6.9, we manually

segment the resection cavity and consider this area as the pseudo ground

truth EZ for each patient.

We compare our proposed framework against competing methods from

the literature (first two below) and ablated versions of our framework (last

four below):

• BN-CNN: A modified version of the BrainNetCNN architecture de-

veloped in [169] that performs region-wise, rather than subject-level,

prediction.

• DeepEZ: The model developed by [40] to localize the EZ based on static

rs-fMRI connectivity.

• NoAttn: Ablation #1 that removes the temporal attention mechanism.

Final predictions are averaged over time.

• ANNattn: Ablation #2 that uses a fully-connected ANN rather than a

transformer as the temporal attention model.

191



Figure 6.9: Resection boundaries (red) for two epilepsy patients.

• LSTM: Ablation #3: that uses an LSTM rather than a transformer as the

temporal attention model.

• NoAugment: Ablation #4 that trains the deep network directly on the

clinical data with no augmentation.

6.3.2.2 Localization performance

Table 6.6 reports the performance of each model. We use a De Long’s test on

the AUC metric [256] to determine statistically significant improvement be-

tween our proposed framework and each baseline. We note an improvement

in sensitivity and AUC when using the transformer to extract the tempo-

ral attention weights. Likewise, we note an improvement when using data

augmentation for training. This is likely because our clinical dataset is too

small to extract information from using our dynamic model, due to the larger

parameterization. Finally, Fig. 6.10 shows model the ground truth (red) and

predicted (yellow) labels for three Epilepsy patients among all models. The

observed trends reflect the metrics in Table 6.6.

192



Method Sens Spec Acc AUC p-value

BN-CNN 0.17 0.81 0.69 0.58 < 10−8

DeepEZ 0.34 0.88 0.87 0.7 0.011
NoAttn 0.35 0.86 0.86 0.69 < 0.01

ANNattn 0.41 0.86 0.88 0.71 0.019
LSTM 0.41 0.88 0.88 0.73 0.052

NoAugment 0.28 0.90 0.90 0.68 < 0.01
Proposed 0.51 0.89 0.92 0.77

Table 6.6: Performance metrics for EZ classification.

Figure 6.10: Ground truth (red) and model predictions (yellow) for three test subjects.

6.3.2.3 Temporal Attention

Fig. 6.11 shows the temporal attention weights recovered from each method

that uses attention (proposed, ANNattn, and LSTM) for each of the 14 epilepsy

patients during the testing phase. We observe a larger dynamic range in the

weights recovered from the proposed framework, as compared to the ablated

models. We conjecture that the transformer learns more nuances in the dFC

data that improve the region-wise EZ classification. We hypothesize that the
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Figure 6.11: Temporal attention weights recovered for Left: the proposed framework,
Middle: the ANNattn ablation model, and Right: the LSTM ablation model for all
epilepsy patients.

MHA operation, which inherently captures similarities and differences be-

tween time-points, is responsible for better honing in on the relevant intervals

for prediction.

6.4 Conclusion

To conclude this chapter, we have introduced DeepEZ, a novel deep learning

approach for EZ localization based on rs-fMRI connectivity. DeepEZ relies

on spatial graph convolutions that leverage biologically-inspired anatomical

pathways to aggregate neighborhood information during forward propaga-

tion. These graph convolutions are complemented with a subject-specific

detection bias (SSDB) to mitigate inter-patient differences in connectivity and

an asymmetry loss term to encourage lateralized predictions. In comparison
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to baseline methods, DeepEZ achieves statistically improved AUC for detect-

ing EZ regions. Via ablation studies, we show that these performance gains

are linked to the EZ contralateral term (SCT) and the SSDB. In subsequent

anaylses, we demonstrate that DeepEZ is robust to varying the parcellation

used for analysis and performs comparably with and without data augmenta-

tion. We also show that DeepEZ achieves robust performance within a range

of δ2 in the weighted cross-entropy loss term.

Clinical rs-fMRI studies often lack statistical power due to small sample

sizes [257] with logistical constraints making it difficult to acquire additional

data for analysis. In our case, the UW Madison dataset contains a specialized

cohort of pediatric focal epilepsy patients who underwent surgical resection of

the EZ. Currently, rs-fMRI is not a commonly acquired modality for epilepsy

patients, which limits our ability to grow the dataset further. Thus, to maxi-

mize the sample size for model training and evaluation, we include patients

that have their scans taken from two different scanners (1.5T and 3T) which

is common in the literature [258, 259, 260]. Accordingly, we have designed

DeepEZ to mine information from smaller heterogeneous datasets. Relevant

attributes include a relatively small number of learnable parameters, a biolog-

ically informed spatial graph, the SSDB module to improve sensitivity, and a

SCT to encourage clinically relevant EZ localization patterns. We demonstrate

state-of-the-art performance, along with a robustness to different modeling

choices and data augmentation. The fact that DeepEZ harmonizes information

across scanners is particularly encouraging, as inter-scanner differences are

known to confound deep learning models [261].
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We then propose a novel end-to-end model based on dynamic functional

connectivity to localize the EZ in focal epilepsy patients. Our model leverages

a combined GCN + transformer architecture for feature extraction and tempo-

ral tracking. In parallel, we leverage a simple yet effective data augmentation

strategy for robust training. We show statistically significant improvements

over the baseline methods, and hypothesize that the performance gain is di-

rectly related to using the transformer-based attention module, which hones in

on relevant intervals of the dFC time series for EZ prediction. Our work shows

increased promise in using rs-fMRI as a preoperative protocol for noninvasive

EZ localization.
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Chapter 7

A framework to characterize noisy
labels in EZ localization

7.1 Introduction

With increasing availability of heavy compute power and large-scale datasets,

deep learning has made unprecedented breakthroughs in many common ma-

chine learning tasks such as computer vision [88], language processing [262],

and medical imaging [32]. As dataset sizes increase, it has been increasingly

popular to employ non-expert humans or automated systems with little su-

pervision to automatically label datasets [263]. However, datasets collected

using these methods usually suffer from very high label noise. The ratio of

corrupted to clean labels in real world datasets is reported to be anywhere

from 8.0% to 38.5% [264].

The challenge of curating datasets with accurate labels is especially sig-

nificant in medical imaging. Datasets tend to be small to begin with, and

institutional policies or patient privacy can prevent data from being shared.

Labeling of medical images is especially resource-intensive and potentially
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unreliable, as it requires specific domain expertise and there often exists a

large degree of inter-observer variability [32]. The study in [265] has utilized

a large number of experts to annotate medical image datasets, but these ef-

forts require financial and logistical resources. The study in [266] used crowd

sourcing to obtain non-expert annotations for medical imaging, but this can

be reliable due to lack of proper training of the participants. Overall, lack

of large datasets with trustworthy labels is considered as one of the biggest

challenges associated with adoption of deep learning methods in the hospital

and medical applications [267].

The models presented in this thesis thus far have assumed perfect labels,

which is not usually the case in the medical imaging domains. Regarding

eloquent cortex localization, we assumed that the thresholded GLM activation

maps taken from the language and motor t-fMRI acted as a perfect ground

truth to capture the regions of interest. However, this assumption could be

flawed, as there is a lot of evidence showing reliability issues with using

t-fMRI as ground-truth biomarkers [268]. Factors like inability to follow the

protocol, or excessive head motion can further disrupt the reliability of t-

fMRI activations [25, 160]. Furthermore for our application in tumor removal

procedures, the reliability of t-fMRI activations can be even lower than with

compared against a healthy cohort [269].

Regarding EZ localization, our models assumed that the resection from

the post-operative T1 image acts as the ground truth EZ. That is, our mod-

els assumed that there is abnormal fMRI activity in the entire resection and
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Figure 7.1: A cartoon example of the various areas of the cortex that are responsible
for seizures. Figure is recreated and taken from [271].

the rest of the brain is considered healthy, or typically functioning. How-

ever, it is well known that these resections usually are larger than the EZ,

as a means of removing secondary tissue that can also be problematic [270].

Specifically, there are five cortical zones defined in presurgical evaluation.

The irritave zone is the area of the cortex that generates the interictal spikes,

the seizure-onset zone is the area of the cortex that initiates clinical seizures.

The symptomatogenic zone is the the area that, when activated, produces the

initial ictal symptoms or signs, the epileptogenic lesion is causitive of epileptic

seizures because the lesion itself is epileptogenic, and the functional deficit

zone, which is the area of the cortex that is not functioning normally in the

interictal period [271]. Fig. 7.1 shows a cartoon image recreated and taken

from [271] that illustrates the various overlaps that these five regions can

have with eachother. As described in [271], removing just the ictal onset zone

is not enough to sustain lasting seizure freedom, and that there is no direct

preoperative measurement of the EZ; its delineation is a conceptual exercise

derived from many tests and presurgical evaluations.
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7.1.1 Contributions

In this section of the thesis, we develop a framework to identify noisy labels

within our existing experimental setups for EZ localization from connectivity

graphs. Specifically, we model the probability of an incorrect label using the

concrete distribution [272], which is essentially a continuous relaxation of

the Bernoulli distribution. Leveraging the data augmentation techniques pre-

sented in [142] for EZ simulation, we create a simulated dataset that contains

noisy labels that reflect the expected pattern of noisy labels in the context

of EZ localization. We develop a neural-network architecture to learn the

concrete distribution parameters of interest in a strongly pre-trained fashion

and then train our localization network with just the noisy observed labels.

We assess how well the proposed method with label dropout does compared

to the standard localization only method presented in [41], and finally we

show that our proposed method outperforms our previous method ( [41]) on

the real subjects from the UW dataset when trained with the noisy dataset and

show the qualitative predictions and recovered parameters on all 14 examples.

It is important to note that this section of the thesis is ongoing work and has

not resulted in a publication yet. We plan on submitting the finalized model

and results to the International Symposium of Biomedical Imaging (ISBI) 2024

conference.
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7.2 Learnable label dropout for noisy label detec-
tion

Our goal in this chapter is to develop a mathematical framework coupled

with a set of experiments to identify noisy labels in the context of EZ local-

ization from rs-fMRI dynamic functional connectivity graphs. We introduce

the concrete distribution to characterize label noise and use a deep learning

network to learn the concrete distribution parameters in a pre-trained fashion.

We take a semi-supervised approach where we pre-train a portion of our deep

network with knowledge of existing latent true labels and then only use the

observed potentially corrupted labels during training for localization. We

begin with our graphical model and underlying assumptions.

7.2.1 Model

7.2.1.1 Graphical model representation

We will explore the noisy label problem in the context of the previously

presented models. Fig. 7.2 shows the graphical model for one subject that

describes our model and assumptions. Mathematically, let n ∈ {1, · · · , N}

index node, X ∈ RN×N×T be the dynamic functional connectivity input, so

Xn ∈ RN×T is the connectivity profile, or data, associated with node n. Let Yn

be the observed label for node n and Ỹn be the real, unobserved label for node

n and let Zn be a random variable that captures the latent corruption of label

n, which is parameterized by αn.

A shown by the plate notation, we assume i.i.d. between nodes and

can derive the joint distribution of Yn, Ỹn, Zn conditioning on Xn from the
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Figure 7.2: A graphical model showing the dependencies in our model. Circles
represent random variables, rectangles represent parameters, and arrows represent
dependencies. Shaded nodes are observed while white are latent.

graphical model as

P(Yn, Ỹn, Zn|Xn) = P(Yn|Ỹn, Zn)P(Ỹn|Xn)P(Zn|Xn). (7.1)

First, we define the helper function ∆(Yn, Ỹn) = YnỸn + (1− Yn)(1− Ỹn),

which acts as an indicator to identify when the observed label is corrupted (i.e.

mislabeled) or not. Using our i.i.d assumption, we can assume P(Y|Ỹ, Z) =

∏N
n=1 P(Yn|Ỹn, Zn). We define our likelihood term as

P(Yn|Ỹn, Zn) = [ρ∆(Yn,Ỹn)(1− ρ)(1−∆(Yn,Ỹn))](1−Zn)[α
(1−∆(Yn,Ỹn))
n (1− αn)

∆(Yn,Ỹn)]Zn

(7.2)

where ρ ≈ 0.99, or essentially is 1. Our likelihood term asserts that when

Zn = 1, there is an αn probability of the label being corrupted, and when

Zn = 0, that there is a very high chance that the label is not corrupted (i.e.
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Yn = Ỹn). In contrast to existing methods that take a similar approach, like

the one in [273], our goal is to develop a framework that can learn the αn

parameters as opposed to have them be set a priori.

The term P(Ỹn|Xn) simply describes the class label distribution while the

term P(Zn|Xn) describes the noise content within the data. We will use two

separate neural networks to characterize these distributions, parameterized

by θ1 and θ′2 = θ2
⋃︁

α respectively.

7.2.1.2 Concrete label dropout

Let αn denote the probability that label n is incorrect, that is P(Yn ̸= Ỹn) =

αn. Instead of sampling the random variable from the discrete Bernoulli

distribution, we model the latent random variable Zn that describes label

corruption via the concrete distribution [272]

Zn = σ

(︃
1
t

(︃
log
(︃

αn

1− αn

)︃
+ log

(︃
un

1− un

)︃)︃)︃
(7.3)

which gives a continuous relaxation of the Bernoulli distribution, where un is

a uniform random variable on the interval of [0, 1]. Here, the temperature t

is a hyperparameter of the distribution. Biologically, we chose the concrete

relaxation of the Bernoulli to reflect that the labels in our case could be partially

incorrect. For example, partial volume effects are introduced when we apply

a parcellation to obtain labels. Empirically, we noticed smoother optimization

and training from using the concrete Bernoulli compared to the discrete case.
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7.2.1.3 Learning the parameters

We use two deep networks to to model P(Ỹ|X) = ∏N
n=1 P(Ỹn|Xn) and P(Z|X) =

∏N
n=1 P(Zn|Xn) where θ1 parameterizes P(Ỹ|X) and θ′2 = θ2

⋃︁
α parameterizes

P(Z|X). Our goal is to find the optimal θ = θ1
⋃︁

θ′2 that maximizes the incom-

plete log-likelihood P(Y|X; θ) = ∏N
n=1 P(Yn|Xn; θ). We use the EM algorithm

to iteratively solve this problem [274].

For an arbitrary distribution q(Ỹ, Z|Y, X), we can derive a lower bound of

the incomplete log-likelihood

log P(Y|X; θ) = log ∑
Ỹ,Z

P(Y, Ỹ, Z|X; θ) ≥ q(Ỹ, Z|Y, X) log
P(Y, Ỹ, Z|X; θ)

q(Ỹ, Z|Y, X)
.

(7.4)

Using the EM algorithm, the E-step involves computing the posterior of

the latent variables using the current parameters θ(t),

P(Ỹ, Z|Y, X; θ(t)) =
P(Y|Ỹ, Z; θ(t))P(Ỹ|X; θ(t))P(Z|X; θ(t))

∑Y′˜ ,Z′ P(Y|Y′
˜ , Z′; θ(t))P(Y′˜ |X; θ(t))P(Z′|X; θ(t))

(7.5)

and then the expected complete log-likelihood can be written as

Q(θ; θ(t)) = ∑
Ỹ,Z

P(Ỹ, Z|Y, X; θ(t)) log P(Y, Ỹ, Z|X; θ). (7.6)

For the M-step, we exploit two deep networks to model the probability

P(Ỹ|X; θ1) and P(Z|X; θ′2). Recall that θ′2 = θ2
⋃︁

α. The gradient of Q with

respect to θ can be decoupled into two parts, which are implemented via
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Figure 7.3: Overall block diagram for our setup. Bottom: The label uncertainty
parameter network is pretrained in a fully supervised manner to learn α from X, as
shown by both Y and Ỹ being backpropagated through Lα. Top: after pretraining,
the localization network is trained only with the obseved labels Y.

backpropagation of the two separate neural networks:

∂Q
∂θ

= ∑
Ỹ,Z

P(Ỹ, Z|Y, X; θ(t))
∂

∂θ
log P(Y, Ỹ, Z|X; θ)

= ∑
Ỹ

P(Ỹ|Y, X; θ(t))
∂

∂θ1
P(Ỹ|X; θ1) + ∑

Z
P(Z|Y, X; θ(t))

∂

∂θ′2
P(Z|X; θ′2)

(7.7)

7.2.2 Deep learning network architecture

7.2.2.1 Overall workflow

An overall diagram for our workflow is shown in Fig. 7.3, where we show the

different variables and networks associated with our model. The dynamic

connectivity matrices X are used as input to both the localization network

and the label uncertainty parameter network. The localization network is
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tasked with producing localization, or classification outputs Ŷ based on the

connectivity inputs X. The models presented thus far, such as the one in

Fig. 6.8, are what the localization network will be. As shown in the top right,

the model outputs Ŷ correspond to class labels (blue).

The label uncertainty parameter network is tasked with predicting α from

the connectivity profiles, which is then used to sample from and generate

the random variable Z according to eq. 7.3. This label uncertainty parameter

network is strongly supervised during pre-training, where both the true label

Ỹ and the noisy observed label Y are seen and backpropagated (red arrow)

through Lα. However, once the parameter network is pretrained, we do not

include information of Ỹ in the training of the localization network, as shown

by block diagram arrows pointing to L, the localization network loss. As

shown on the bottom right, the continuous random variable Z represents a

probability of each label being corrupted, based on the connectivity profile.

The white circle shows an example where the network had a high uncertainty

(shown in red on the bottom right heatmap) of the boundary parcel that it also

classified as belonging to the EZ class. Providing the clinician with both of

these outputs can be useful in trying to determine where the actual EZ is.

7.2.2.2 Label uncertainty parameter network

Our strategy to identify αn involves a pre-training phase with full supervision.

During this pre-training phase, we have access to both Y and Ỹ. Fig. 7.4

shows the label uncertainty parameter network (blue box in Fig. 7.3) used

for pretraining. As shown in pink, we use the edge-to-edge convolutional
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Figure 7.4: We use the edge-to-edge convolutional neural network architecture with
an ANN to predict α in a fully supervised manner. This network learns the connectiv-
ity patterns associated with mislabeled nodes.

filters designed in [169] to extract intermediate feature maps (green) from the

dynamic connectivity inputs. Mathematically, let m ∈ {1, · · · , M} be the E2E

filter index, rm ∈ R1×N be the row filter m, cm ∈ RN×1 be the column filter m,

b ∈ RM×1 be the E2E bias, and ϕ(.) be the activation function. For each time

point t the feature map Hm,t ∈ RN×N is computed as follows:

Hm,t
i,j = ϕ

(︄
N

∑
n=1

rm
n Xt

i,n + cm
n Xt

n,j + bm

)︄
. (7.8)

The edge-to-node (E2N) filter is a 1D convolution along the columns of each

feature map. Mathematically, let gm ∈ RN×1 be E2N filter m and p ∈ RM×1

be the E2N bias. The E2N output hm,t ∈ RN×1 from input Hm,t is computed as

hm,t
i = ϕ

(︄
N

∑
n=1

gm
n Hm,t

i,n + pm

)︄
. (7.9)

We then reshape the representation into a N×MT matrix to then feed into a 3

layer ANN and obtain predictions αn. To ensure 0 ≤ αn ≤ 1, we use a softmax

layer.

207



The full supervision of our pretraining phase is reflected in our loss func-

tion Lα. Recall that we have access to both Ỹn, Y using a simulated dataset.

We sample Z and our loss function is

Lα = − 1
N

N

∑
n=1

ϵ1(1− ∆(Yn, Ỹn)) log(Zn) + ϵ2∆(Yn, Ỹn) log(1− Zn). (7.10)

The loss function Lα is a weighted cross entropy function that encourages

αn to be high when the labels Yn, Ỹn are different (first term) and encourages

αn to be low when the labels are the same (second term). We introduce the

weights ϵ1, ϵ2 to handle the class-imbalance, as only a relatively small subset

of the nodes will be mislabeled.

7.2.2.3 Combined network training

Once pre-trained, the label uncertainty neural network parameters are set.

For this work, we explore the context of noisy labels using the EZ localization

network. Therefore, the localization network block in Fig. 7.3 is replaced with

our ISBI model shown in Fig. 6.8 during the entire network training. Let

yn ∈ RN×2 be the one-hot encoded version of Yn where for nodes belonging

to the healthy class, yn,1 = 1, yn,2 = 0 and for nodes belonging to the EZ

class, yn,10, yn,2 = 1. Let ŷn ∈ RN×2 be the network outputs for node n.

After pretraining is complete, we train the entire network with the following

semi-supervised loss function, which only uses knowledge of Y into account:
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L = − 1
N

[︄
(1− Zn)

[︁
yn,1δ1 log ŷn,1 + δ2yn,2 log ŷn,2

]︁⏞ ⏟⏟ ⏞
Certain term

+Zn

(︃ log ŷn,1 + log ŷn,2

2

)︃
⏞ ⏟⏟ ⏞

Uncertain term

]︄

+λ1

⃓⃓⃓⃓
⃓(1− Zn)−

|∑i∈ne(n) Yi − M
2 |

M
2

⃓⃓⃓⃓
⃓⏞ ⏟⏟ ⏞

Neighborhood smoothing term

.

(7.11)

As shown, our loss function is broken down into three main terms. The

certain term reflects when we are confident about the observed label, i.e., the

network believes the label is not corrupted. Recall that since αn reflects the

probability of label corruption, then when (1− Zn) is high, we have high

confidence in the label being correct. Therefore, we backpropagate the original

weighted cross entropy loss as the certain term. The uncertain term reflects the

case when we believe label n is incorrect, and therefore we backpropagate the

average of the two prediction terms log ŷn,1 and log ŷn,2. The hyperparameters

δ1, δ2 are the cross entropy weights which help mitigate the class imbalance

problem we have, as the majority of nodes considered will belong to the

healthy class.

The neighborhood smoothing term in our loss function acts as a biologi-

cally inspired regularization term that takes direct spatial neighbors of node

n into account, where M is the number of neighbors considered (M = 6 in

this work). The term ϕ(Yn) =
|∑i∈ne(n) Yi−M

2 |
M
2

is close to 0 when the neigh-

bors of node n are an even mix of labeled healthy (Yn = 0) or labeled EZ

(Yn = 1). Given (λ1 > 0), when ϕ(Yn) = 0, the term λ1(1− Zn) survives,
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which encourages αn to be big, or close to 1 when we minimze the loss during

backpropagation. So when the neighbors of n belong to both classes, we are

on the boundary of a resection and are more unsure of its label. Likewise,

when ϕ(Yn) = 1, our loss encourages αn to be close to 0, reflecting that we are

more sure of the label for nodes with homogeneous neighbors.

7.2.2.4 Prediction on testing data

During a forward pass in the testing phase for subject i, our model recovers

both localization predictions ŷi
n and αi

n for n ∈ {1, · · · , N}. For our final

localization prediction, we want to consolidate both pieces of information. Let

ᾱi = 1
N ∑N

n=1 αi
n. During testing, we fuse the predictions and alpha parameters

per subject i in the following fashion

ŷi
ntest = ŷi

n ∗ (1− αi
n) + ᾱi. (7.12)

Since ŷ > 0.5 results in a prediction of EZ, equation 7.12 encourages ŷi
ntest to be

smaller, and more likely to be classified as healthy when αi
n is relatively large.

This is due to the fact that the majority of recovered α values are relatively

low (0.1− 0.2), reflecting that we are usually confident about the label in this

setup.

7.2.2.5 Implementation details

We implement our network using the PyTorch [250] deep learning library. We

pre-train the label uncertainty parameter network using the Adam optimizer

for 250 epochs with a learning rate of 0.001 that decays by a factor of 0.8 every

20 epochs using a learning rate scheduler. We set the feature map number
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M = 35 and set the weighted cross entropy hyperparameters to ϵ1 = 1.1

and ϵ2 = 0.15 to handle the class imbalance. Once pretrained, we train the

entire network using the Adam optimizer for 150 epochs with a learning

rate of 0.0005 that decays by a factor of 0.8 every 10 epochs using a learning

rate scheduler. It is important to note that we set the initial learning rate for

the label parameter network to 0.00005 during the entire network training

to prevent the label uncertainty network parameters from moving too far

from the strongly supervised pretraining stage. We set the hyperparameters

δ1 = 0.16 , δ2 = 1.2 and λ1 = 0.08 in the overall loss function.

7.3 Experimental results

7.3.1 Simulated dataset

Following our work from [41], we use noise models to simulate the EZ region

to obtain X, Y, Ỹ. We use the noise model approach outlined in [142] to simu-

late the EZ in healthy rs-fMRI from 400 HCP subjects. The details associated

with the HCP dataset are presented in Chapter 2 of this thesis. To simulate the

true EZ signal used for our Ỹ label, we replace the fMRI time series with one of

six noise models: (1) adding normally distributed noise, (2) adding uniformly

distributed noise, (3) adding power-law noise, (4) adding Brownian noise,

(5) adding noise generated by a Levy walk process, and (6) randomly permut-

ing the time series. For the entire network training and testing, we took 200

subjects and created three separate samples per subject. To prevent bias, we

do the pretraining phase with an entirely separate 200 subjects. Fig. 7.5 shows

a carton illustration of various potential mislabeling schemes we captured in
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Figure 7.5: A cartoon to illustrate our sampling procedure for creating our simulated
dataset. Blue refers to the observed label Y and red refers to the true label Ỹ. Following
what is expected during EZ resections, we make the true label a subset of the observed
label, and only modulate the fMRI signal in the true label regions (red). We create a
comprehensive training set by including different types of samples, like where Ỹ is
relatively small, large, or on the boundary of the resection.
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Figure 7.6: The training loss for the label uncertainty parameter network. We see
that the network approaches near 0 in the training loss, thus showing a strongly
pretrained network.

our dataset, where the red region corresponds to the true label Ỹ for which the

fMRI signal is augmented and the blue corresponds to the observed label Y

where the fMRI signal remains healthy but the region is labeled as belonging

to the EZ class. We create a comprehensive training set by including different

types of samples, like where Ỹ is relatively small, large, or on the boundary of

Y and the healthy nodes. While some samples may have Y be very close to Ỹ,

it is important to note that the entire dataset has noisy labels.

7.3.2 Pretraining results

Fig. 7.6 shows the training loss after pre-training the label uncertainty param-

eter network. As shown, the network eventually approaches a training loss

of 0, indicating that there is enough capacity in the network to identify the
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mislabeled nodes in a strongly supervised setting. Since we are not introduc-

ing knowledge of Ỹ into the training of the entire network, it is important to

note that the effectiveness of our proposed approach is heavily contingent on

how well the label uncertainty parameter network can predict α based on the

connectivity patterns.

7.3.3 Localization results

Our main experiment involves assessing how well the entire network does

with localization, and observing how well the label uncertainty network

identifies mislabeled nodes using the simulated noisy dataset. Similar to our

previous works, the reported statistics were determined using repeated 10-

fold CV, where each run has a different fold membership. We report the mean

and standard deviation of the metrics. To demonstrate statistically significant

improvement, we perform a t-test (Eq. 4.6) on the repeated 10-fold CV runs,

which corrects for the independence assumption between samples [151]. The

p-value calculated is with respect to the AUC metric of the proposed method

in table 7.1 and with respect to the only localization method in table 7.2. To

recall, only the observed Y label is introduced during the entire network

training. We observe the performance of the entire network with the label

uncertainty parameter network (proposed) and without (only localization).

As a baseline method to evaluate against, we compared with the DeepEZ

method proposed in chapter 6 (Fig. 6.1) on static connectivity data. We report

test metrics using both Ỹ (table 7.1) and Y (table 7.2) to observe how well the

network does with the true labels, even when entirely trained on the noisy
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Method Sens Spec Acc AUC p-value
Proposed 0.45± 0.11 0.90± 0.07 0.83± 0.12 0.71± 0.05

Only localization 0.56± 0.14 0.67± 0.12 0.71± 0.13 0.61± 0.05 0.016
DeepEZ 0.34± 0.16 0.69± 0.13 0.66± 0.14 0.56± 0.09 0.0012

Table 7.1: Testing metrics using the true labels Ỹ for metric calculation.

Method Sens Spec Acc AUC p-value
Proposed 0.39± 0.14 0.88± 0.08 0.77± 0.11 0.65± 0.02 0.40

Only localization 0.46± 0.15 0.85± 0.09 0.83± 0.1 0.68± 0.04
DeepEZ 0.29± 0.16 0.8± 0.08 0.72± 0.11 0.61± 0.03 0.041

Table 7.2: Testing metrics using the noisy labels Y for metric calculation.

labels. To prevent data leakeage and biased results, for the proposed method

we pretrain the label uncertainty parameter network with a different subset of

subjects than the entire network training and testing.

Table 7.1 shows the testing results when using Ỹ as the ground truth label.

The proposed method including the label uncertainty parameter network out-

performs only using the localization network, as shown by a higher accuracy

and AUC metric and a p-value of < 0.05. The proposed method maintains a

good sensitivity while having a much higher specificity, so it is not suffering

from over predictions where the only localization method is. This result high-

lights that, compared to the only localization method, the proposed method is

correctly omitting nodes that are labeled as belonging to the EZ but have a

healthy rs-fMRI signature, even though the proposed method is trained on

noisy labels. Both methods outperform DeepEZ, which is expected due to

the lower parameterization and predictive power of DeepEZ compared to the

dynamic transformer model.

The first trend we notice in table 7.2 is that each method performs worse
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than our previous results for EZ localization, from the DeepEZ paper and the

ISBI 2023 paper. This observation is intuitive because many samples created in

the dataset have a large disparity between Y and Ỹ, and therefore the training

is much more poisoned than for our previous work, especially in our ISBI

paper where we simulated perfect training labels. Secondly, we notice that

the only localization method outperforms the proposed method. Even though

the performance difference is not significant (p = 0.37), this result is intuitive,

as the proposed method is geared to be more conservative with prediction

(shown by the smaller sensitivity), and was pre-trained with the true labels.

7.3.3.1 Performance on real data

We evaluate the performance of the proposed, localization only, and DeepEZ

method on the 14 subjects from the UW dataset while these three methods are

trained entirely on the noisy dataset. Recall that the proposed method is pre-

trained using information including the true label as well. We use De Long’s

test on AUC to show statistical significance in our results. Table 7.3 shows the

testing performance, where we observe that the proposed method outperforms

the only localization method in AUC and specificity for localization metrics on

the real dataset. Even though the proposed method does not outperform the

results published in our ISBI paper (Table 6.6), this experiment highlights an

interesting result. If trained entirely on a noisy dataset, which is possible in a

real world setting, the method from our ISBI paper generalizes much worse to

real subjects compared to the proposed method that involves learning the label

uncertainty parameter and effectively discarding mislabeled nodes during

training. Fig. 7.7-7.8 shows the ground truth (red) labels and predicted (blue)
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Method Sens Spec Acc AUC p-value
Proposed 0.41 0.91 0.88 0.73

Only localization 0.51 0.77 0.82 0.68 0.08
DeepEZ 0.25 0.82 0.83 0.59 < 0.01

Table 7.3: Testing metrics using the 14 subjects from the UW dataset.

labels among the three methods considered as well as the recovered αn values

(heat map) for each test subject in the UW dataset. The proposed method

accurately localizes regions within the ground truth label while having less

false positives than the only localization method. Generally, the proposed

method localizes at least one region in the resection, so even though it has a

low sensitivity, these predictions are valuable in a clinical setting.

7.3.3.2 Alpha parameter analysis

Contained within Fig.7.7-Fig.7.8 are the recovered αn parameters shown in a

heat map where transparent corresponds to values closer to 0 and solid red

to orange corresponds to values closer to 1(column three). We notice some

interesting trends in the recovered parameters, such as in subjects 1, 2, 4, 7, 10,

11, 12 where we can see relatively larger α values within parts of the annotated

resection zone. This observation captures the phenomenon we are trying to

observe, which is parts of the resection zone has healthy tissue. Furthermore,

we see some trends where the αn value is high in regions that results in false

positives in the only localization method, such as in subjects 1,4,11,12,13. This

observation makes sense, as during training, the α values in synergy with the

network predictions combine to encourage less false positives.
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GT Proposed Alpha
Only

localization
DeepEZ

Figure 7.7: Ground truth (red) and predictions (blue) for the first seven subjects in the
UW testing dataset. We observe the proposed method suffers from less false positives
than the only localization method.
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GT Proposed Alpha
Only

localization
DeepEZ

Figure 7.8: Ground truth (red) and predictions (blue) for second seven subjects in the
UW testing dataset. We observe the proposed method suffers from less false positives
than the only localization method.
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7.4 Conclusion

In this section of the thesis, approached the noisy label problem through the

context of EZ localization. We assume the probability of mislabeling follows a

concrete relaxation of the Bernoulli distribution. We developed a graphical

model and derived the EM equations for our setup, and use backpropagation

from neural networks to achieve parameter updates. We introduce a deep

learning framework that is trained in separate parts to achieve our goal,

where we strongly pre-train the label uncertainty parameter network to be

able to learn the Bernoulli parameters from a separate dataset. We create an

artificial noisy dataset using EZ simulation methods that spans various types

of mislabeling schemes we expect to see in the context of EZ localization (i.e.

overlapping with the resection, the true label being a small fraction of the

resection, etc.). Highlighted by Fig. 7.6, we observe strong pre-training. We

show promising results, where even when trained on the noisy labels, our

proposed method outperforms the ISBI model when testing with the true

labels. We show that the proposed method outperforms the ISBI model on

the 14 real focal epilepsy subjects from the UW dataset when trained with

the noisy dataset, highlighting the effectiveness of the proposed approach.

Finally, we show the predictions on the test subjects for which the proposed

method provides a better, more clear localization map than the baselines, as

highlighted and guided by the recovered α values.

220



Chapter 8

Discussion and conclusion

In this chapter, we summarize the main ideas, models, and findings presented

in this thesis. The common input data structure to each of our methods is

a connectivity graph which summarizes the whole-brain connectivity of a

person via their rs-fMRI scan. Overall, we introduce novel deep learning

based approaches to perform parcellation refinement and to analyze rs-fMRI

connectivity of atypical populations, such as those with brain tumors or having

focal epilepsy. We emphasize the application of localization to improve the

planning of neurosurgery resection procedures. We test the relatively new

hypothesis surrounding dynamic connectivity, that different cognitive systems

of interest phase in and out of each other in an interconnected way throughout

the course of a rs-fMRI scan, and show localizatiom improvement using

models developed for dynamic connectivity. We conclude the thesis with a

new exploratory direction in tackling the noisy label problem present in the

EZ localization work.

This final chapter of the thesis is organized as follows. We first summarize

the main findings from each of the five main chapters in this thesis. We will
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do a brief overview of the models developed and the results that we obtained.

We will discuss potential drawbacks of the methods developed. We conclude

with a discussion of future work and potential extensions of our work to be

more valuable from a performance standpoint and in a clinical setting.

8.1 Overview

In chapter 3 we built two separate models that are capable of performing

subject-specific parcellation refinement. Our goal in this chapter was to de-

velop these methods to characterize the individual nuances and differences

in subjects’ neural organization, especially for pathological cases. Our first

model (Fig. 3.1) employs a MAP procedure using a markov random fields

prior and a correlation coefficient based likelihood term for reassignment. We

showed that our MRF model can provide better motor task concordance in

tumor patients than existing methods. We then developed RefineNet (Fig. 3.6),

the first neural network inspired module to perform parcellation refinement

that is also jointly trained on maximizing performance on common rs-fMRI

connectivity analysis downstream tasks. We showed that RefineNet can im-

prove downstream task performance for ASD vs NC classification, language

localization, and fluid intelligence prediction. We show that a subject-specific

approach to parcellation construction via refinement from an established par-

cellation is a potential avenue for better performance on rs-fMRI analysis

tasks.

In chapter 4 we develop our first models applied to connectivity data

from brain tumor patients that are tasked with localizing the eloquent cortex.
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We leverage specialized convolutional filters designed to extract informative

connectivity based features from graphs and developed our original GNN

(Fig. 4.2), which was tasked with individually localizing the language and var-

ious motor networks in tumor subjects. We extend this work to our multi-task

GNN ( 4.6), which includes a multi-task learning branch and a much larger

capacity model that is capable of simultaneously classifying the language and

various motor regions of the brain tumor cohort. This improved model is

capable of handling missing data due to the loss function, and we performed

a vast number of experiments to show its robustness and generalizability,

such as including performance on a simulated dataset, varying the parcel-

lation used, performing hyperparameter sweeps and degrading the tumor

segmentations. We show clinically promising results, as our methods are able

to even capture bilateral language areas during testing even when these cases

were not present during the training phase. However, our performance using

static connectivity graphs as the input was capped at around 0.76− 0.83 AUC,

which is not desirable in a clinical setting.

We extend the work from chapter 4 to the dynamic connectivity case

in chapter 5, where we introduce novel attention based models to improve

eloquent cortex localization. A In our MLCN model (Fig. 5.1), we combine our

MTGNN applied to dynamic connectivity inputs with a temporal attention

mechanism drawn from an LSTM module. The model extracts two temporal

attention vectors, one for language and one for motor. The attention vectors are

tasked with identifying which time points are more salient or informative in

the downstream node classification. We then extend this work by developing
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a spatiotemporal attention model. This model includes a multi-scale spatial

attention method that uses 2D convolutions on the intermediate convolutional

features and refines them for maximal class separation. The IPMI model

(Fig. 5.4), has a temporal attention mechanism as well, and achieves 0.87− 0.91

AUC, with a very notable increase in the language AUC compared to the

static models. We demonstrated combining neurobiological hypotheses with

novel learning architectures to capture the nuances in temporal evolution

to ultimately improve eloquent cortex localization in tumor patients from

rs-fMRI connectivity.

In chapter 6, we develop models that are able to localize the epileptogenic

zone (EZ) in focal epilepsy subjects. We note that for our work, this is a consid-

erably more challenging problem compared to eloquent cortex localization in

tumor patients for a few key reasons. First, the rs-fMRI of EZ regions doesn’t

necessarily have an identifiable signature, or a common connectivity pattern

with the rest of the brain. It has been though to be an isolated network with

abnormal connectivity patterns. Second, the EZ can span the entire brain,

and is not always present in the same region. Third, the dataset available is

much smaller and may contain noisy labels due to using the resection area

acting as the ground truth. To this end, we developed a graph convolutional

network with an anatomical connectivity graph structure to localize the EZ

from connectivity graphs. DeepEZ (Fig. 6.1) contains a biologically inspired

loss function to account for the intrinsic symmetry found within rs-fMRI

connectivity analysis and a subject-specific bias term to help mitigate learn-

ing from a small dataset. We observe that DeepEZ outperforms the CNN

224



architecture used for eloquent cortex localization, and observe that various

ablations of DeepEZ do not perform as well as using the combination of afore-

mentioned modelling choices. Later in chapter 6, we improve upon DeepEZ

by introducing dynamic connectivity analysis to our modelling choices. We

use DeepEZ applied to many input graphs at once and a transformer network

to identify temporal attention and consolidate information along the time

axis. To handle the small dataset problem, we train our network entirely on

an artificially created dataset, where we simulate the EZ in healthy rs-fMRI

from the HCP dataset. Therefore, we have a comprehensive large training

set to learn from. We see a marked improvement in localization using this

combination of data augmentation for training and a dynamic connectivity

based model with temporal attention.

Finally, in chapter 7, we conclude the thesis with our last exploratory

research endeavor involving learning from datasets with noisy labels, specif-

ically in the context of EZ localization. Following the assumption that the

true EZ is most likely only a fraction of the entire resection zone, we create

an entire dataset of artifically created noisy labels, where the true label is a

fraction of or on the boundary of the observed label, and we only augmented

the true label region’s fMRI. We assume the probability of mislabeling follows

a concrete relaxation of the Bernoulli distribution and develop a graphical

model approach to lay out our mathematical assumptions. We then use deep

networks to do two tasks: (1) predict the Bernoulli parameter of mislabeling

and (2) perform localization. Using a pre-training fully supervised strategy,

we train a parameter learning network to learn the probability of a noisy label.
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We then only include the observed labels for training our entire setup, which

is tasked with performing localization as well as identifying highly uncertain

labels. We observe that our proposed method performs better on the true

labels than the baseline in the AUC and specificity metrics, suggesting that

our pre-training strategy can identify the mislabeled nodes and accurately

label them as healthy while maintaining a good sensitivity. We show that our

proposed method performs better than the only localization method when

testing on the 14 UW subjects, when both methods are trained on the noisy

dataset. This results shows promise in our framework, as real EZ datasets are

more likely to be noisy than contain perfect labels.

8.1.1 Scope

The models and findings presented in this thesis lay the foundation for con-

tinued exploration of rs-fMRI connectivity analysis to localize key regions in

tumor and epileptic patients, as well as to provide subject-specific parcellation

construction / refinement approaches. We introduce methods to obtain more

accurate subject specific parcellations that capture informative differences

between subjects for general rs-fMRI analysis. Regarding eloquent cortex

localization in brain tumor patients, we developed the first model to perform

localization from using the connectivity graph as an input, which contributes

to the foundation of using rs-fMRI to aid preoperative planning procedures

for tumor removal surgeries. The scope of our EZ work includes broadening

the field of non-invasive EZ localization for preoperative mapping via novel
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graph convolutional and transformer based networks applied to rs-fMRI con-

nectivity. Finally, we lay the foundational groundwork for identifying noisy

labels in epileptic datasets, which can be helpful for future models.

8.2 Limitations and future work

We acknowledge some limitations associated with our work, models and

datasets presented in this thesis. The first limitation involves the data pre-

sented. Larger datasets will have better predictive power and models trained

on larger datasets will be able to generalize better to unseen cases. Generally,

our models suffered from low performance, potentially due to having smaller

datasets. For example, we only had access to 62 subjects for the tumor dataset

and 14 real subjects for the EZ localization work. Even though we included

simulated datasets using the publicly available HCP dataset, our datasets did

not exceed a few hundred subjects, which is still considered small in a general

machine learning sense. Future work could include collecting and curating

more subjects’ data and observing if our models performance increases.

Another limitation is how our models either lacked available additional

data modalities or did not show improvements with using existing additional

modalities. For example, we had access to the subject-specific DTI of the

focal epilepsy patients, but showed that using their structural connectivity

profiles decreased performance in our DeepEZ GCN. Future work involves

developing a more intricate model to meaningfully extract information from

the additional modalities present, such as DTI for the EZ localization work or

the structural MRI for both EZ and eloquent cortex localization. Following

227



the work of [275], we can improve our parcellation refinement models by

incorporating a multi-modal approach as well, where information from DTI

or structural T1 images can improve the resulting refined parcellations.

In general, deep learning methods are considered "black box" models that

lack interpretability. This presents a large limitation of the models presented

in this thesis, as a barrier of including fully deep learning based models in the

clinic / hospital include lack of interpretability. If the engineer cannot explain

in detail how or why a certain method works, it will not be seen as reliable

through the clinician’s viewpoint. Furthermore, regarding both eloquent

cortex and EZ localization, our models achieved relatively lower AUC (< 0.92),

specifically for EZ localization, highlighting how foundational this research is.

We would not necessarily be confident in directly implementing our models

into the hospital as is. Future work includes training deeper models with

larger, more comprehensive datasets to eventually achieve clinically reliable

accuracies.

One limitation and future work regarding the parcellation refinement

techniques presented is the lack of model exploration. Since the main focus

of this thesis has been eloquent cortex and EZ localization, we did not write

or publish a journal article on the refinement work. For example, RefineNet

has many possible extensions, such as a neighbor analysis, adding layers to

the network, or training a similarity network to identify similarity between

time series rather than just using the correlation coefficient. Models such

as the one in [276] have been developed to train deep networks to identify

similarity between time series to replace the standard correlation coefficient.
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Adding this module to RefineNet could improve the refinement accuracy by

incorporating a data-driven approach for the likelihood term. Furthermore,

we did not explore incorporating dynamic connectivity into refinement, where

one could observe how the refinement changes over time based on which

segment of the rs-fMRI is input into the models and ensemble or average the

final predictions.

One limitation and future work of the eloquent cortex localization work is

lack of exploration in modelling the tumor. We simply zeroed out the tumor

regions in our connectivity graphs. Future work involves modeling the effect

that the tumor has on surrounding functionality. Moving towards voxel-level

localization is one direction of future work as well, as the parcellations suffer

from partial volume effects and a less fine resolution of analysis.

Finally, we acknowledge current limitations associated with our ongoing

work on EZ localization using noisy labels. First, we acknowledge that the

results presented are only significant in table 7.1, highlighted by a p-value

of < 0.05. Even though the proposed method outperforms the localization

only method when testing on the 14 real subjects from the UW dataset, the

result is not significant and it still does not outperform the localization method

when the localization method is trained on perfect labels (our ISBI paper uses

perfect labels for training). There are many avenues for future work with

this method. The first is experimenting with the various terms in Eq. 7.11,

where the uncertain term could be a different penalty to potentially improve

optimization and training. Furthermore, we can increase the capacity of the

network and increase the number of samples in the dataset. We could include
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different variations of mislabeled nodes that could be present in a real world

dataset, such as including the contralateral region. Finally, we can extend

this framework to the eloquent cortex localization work, which would require

different biological assumptions but an overall similar approach.

8.3 Conclusion

To conclude, we’ve explored four main branches of applying machine and

deep learning models to rs-fMRI connectivity analysis: (1) parcellation re-

finement techniques, (2) eloquent cortex localization in brain tumor patients,

(3) EZ localization in focal epilepsy subjects and (4) EZ localization in the

presence of noisy labels. We tackled relatively new and unexplored problems

using rs-fMRI connectivity graphs, mainly focusing on atypical rs-fMRI and

developing subject-specific approaches. We developed models that work well

given how small and heterogenous the datasets are. We explored dynamic

connectivity models to improve our localization models via leveraging the

hypothesis that even at rest, various cognitive systems phase in and out of

inter-connected synchrony. Our models capture this phenomenon using spe-

cialized deep learning modules. Finally, we conclude via exploring a new and

important sub-field in rs-fMRI analysis, and that is the modeling of noisy la-

bels, specifically through the context of EZ localization. The unifying theme of

this thesis is that no two brains are the same, and group-level derived methods

may not apply well to every case, especially when pathology is present. The

work presented in this thesis increases promise of using rs-fMRI as a valuable

preoperative mapping tool for eloquent cortex and EZ localization, as well
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as a valuable research and clinical tool to investigate the organization of the

brain.
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