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Abstract

This thesis focuses on data-driven emotional speech generation using prosodic

elements. Speech, a universal mode of communication, carries vital infor-

mation beyond semantics, such as speaker identity and emotion. This work

emphasizes intonation, intensity variation, and rhythm modulation as key

prosodic elements for emotional speech understanding and generation.

Throughout this thesis, we combine probabilistic modeling with deep

neural networks to transform neutral speech into emotional speech. We

explore supervised, unsupervised, and reinforcement learning paradigms

and rigorously evaluate these techniques against state-of-the-art models. The

VESUS corpus, a reference dataset collected by us, ensures our methods

generalize across multiple speakers and unseen vocabulary.

Chapter 1 introduces speech production, emotion models, and the im-

portance of prosody in emotional speech perception. It sets the stage for

emotional speech generation using prosodic transformation.

Chapter 2 provides essential technical background on diffeomorphic map-

ping, variational inference, and graphical models. These concepts are crucial

for understanding the subsequent chapters.

Chapter 3 and Chapter 4 focus on supervised models for modifying
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prosody (F0 and energy) using the VESUS corpus. The former presents two

models: one based on a highway network with gender embeddings and an-

other employing diffeomorphic regularization. Chapter 4 extends the model

to predict F0 and energy contour at the utterance level, leveraging segmental

and supra-segmental properties.

Chapter 5 introduces the Variational CycleGAN framework for unsuper-

vised prosody modification, addressing the limitations of vanilla CycleGAN.

Chapter 6 presents a supervised rhythm modulation algorithm combin-

ing generative modeling and dynamic time warping (DTW) to align input

speech with a hypothetical desired output. It uses latent variable modeling

for attention maps and DTW similarity matrices.

Finally, Chapter 7 discusses an unsupervised duration modification method

employing reinforcement learning. This approach identifies important seg-

ments within an utterance using a masking strategy with a first-order Markov

property, with the agent learning a distribution over transformation options.

In summary, this thesis employs diverse techniques, from supervised to

unsupervised learning, to enhance emotional speech using prosodic elements,

culminating in comprehensive evaluation and applicability to various speak-

ers and vocabulary.
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Chapter 1

Introduction

Effective and natural communication has played a crucial role in the evolution

of mankind. It is by the virtue of communication via languages that we have

been successful at organizing in groups, and thwarted off enemies for survival.

At the heart of natural communication is our ability to speak. Speaking is

the easiest way to manifest our thoughts, purpose and desires. We as human

beings are exposed to a plethora of sounds long before we can read and see,

which makes it fundamental to the understanding of world around us.

Decades of research have led to a very deep understanding of the way

speech is generated by humans. In fact, we can easily mimic the speech

production process by a computer using very simple techniques rooted in

basics of signal processing. These primitive models generate intelligible

speech, but usually have a buzziness (called vocoder characteristics) which is

often considered unpleasing. Lately, the quality of such machine generated

speech has seen tremendous improvements, credit to the deep neural networks

and ability to train them, which allow us to approximate complex distributions

in very high dimensions. Broadly, there are two main components of human
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speech: first is the content which provides semantic meaning to the words

spoken, and second is the manner or style of speaking. The manner or style

of speech signal carries para-linguistic information about speaker’s identity,

mood and intent. Therefore, speech represents a more rich and varied form

of information than text. It is therefore natural to demand the same amount

of richness from a machine synthesised speech for natural conversations.

Unfortunately, it is a difficult problem which has eluded many speech and

audio researchers. The difficulty arises from the subjectivity of speaker and

emotion specific characteristics in speech. While research in the domain of

speaker identification has been largely successful, emotions are hard to predict

from short speech utterances due to factors such as context, and simply due to

variations in manifesting them. Additionally, emotion perception from speech

is closely tied to speaker’s knowledge. Therefore, disentangling an emotion

representation from speech is a challenging task worth exploring.

Having said that, prior research in the domain of speech perception have

identified key para-linguistic aspects of speech that are crucial for underlying

emotional intent. These features formally belong to the group of prosodic

features. Intonation, voice quality, intensity, timbre and rhythm are some of

the important prosodic features that provides uniqueness to a speech signal

and characterize speaking style or manner of speech.

1.1 Speech Production

The speech production process starts with the formulation of thoughts into

words with the intended meaning. The brain, then sends out signals to the
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articulators in order to produce each sound of the utterance. The physical

activity begins with the lungs pushing out air through the oral and nasal cavity.

The volume of air pushed out encounters the vocal folds which is either tensed

or relaxed. When the vocal folds are tensed, it vibrates at a regular rhythm

to produce voiced sounds, such as, /a/, /i/, etc. The frequency of vibration

is determined by the amount of tension in vocal folds. When the folds are

relaxed, there is no vibration and the air passes straight through it.

The vocal tract includes larynx, pharynx and oral cavities. The shape

of vocal tract is responsible for certain resonances and anti-resonances in

the acoustic produced. These resonance frequencies determine the identity

of phonemes or sounds. Voiced sounds have prominent resonances in the 0-

3000Hz range, whereas unvoiced sounds have peaks in the tail of the frequency

spectrum. The vocal tract is modelled as a combination of tube of changing

widths and lengths. A cylinder is the simplest approximation of the vocal

tract for which as linear system can be designed [1].

1.2 Models of Emotion

There are many models of emotional categories that also depict the relationship

between then. Some of the popular ones are shown in Fig. 1.1.

1.2.1 Plutchik’s Model

The Plutchik Wheel of Emotions, also known as the Plutchik Emotion Cir-

cumplex, is a model that visually represents various human emotions and

their relationships [2]. It was developed by the American psychologist Robert
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Plutchik argued that these eight primary emotions are fundamental and

can combine in various ways to produce secondary and tertiary emotions.

He also proposed that these emotions can be arranged in pairs of opposites,

such as joy and sadness or trust and disgust, to create additional emotional

states. Furthermore, Plutchik’s model suggests that emotions can intensify or

mellow through varying degrees, leading to a more nuanced understanding

of emotional experiences. For example, the emotion of anger can range from

mild irritation to intense rage.

1.2.2 Russell’s Model

Russell’s model of emotions [2], also known as the circumplex model of

affect, is a psychological framework that aims to understand and represent

emotions based on two primary dimensions: valence and arousal. The two

main dimensions in Russell’s model are:

• Valence: This dimension reflects whether an emotion is experienced as

positive (pleasant) or negative (unpleasant). Emotions with a positive

valence are typically associated with feelings of happiness, joy, and

contentment, while those with a negative valence are linked to emotions

like sadness, anger, and fear.

• Arousal: Arousal refers to the level of physiological activation or inten-

sity associated with an emotion. Emotions can vary in terms of their

arousal, ranging from low arousal (calm, relaxed) to high arousal (ex-

cited, agitated). For example, calmness and boredom are low-arousal

states, while excitement and anxiety are high-arousal states.
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Russell’s model places emotions within this two-dimensional space, allow-

ing for a more nuanced understanding of emotional experiences. Emotions

are positioned in relation to their valence (positive to negative) and arousal

(low to high) levels. This results in a circular diagram where emotions can be

located based on their characteristic valence and arousal levels.

1.2.3 Ekman’s Model

Ekman’s model of emotion is based on the idea that there are several basic or

primary emotions that are universally recognized across cultures [2]. These

basic emotions are considered to be biologically hardwired and share common

facial expressions and physiological responses. Ekman initially identified six

basic emotions:

• Happiness: Associated with a smiling facial expression.

• Sadness: Characterized by a frowning facial expression.

• Anger: Recognized by a furrowed brow and clenched jaw.

• Fear: Marked by wide eyes and a tense facial expression.

• Disgust: Typically shown with a wrinkled nose and raised upper lip.

• Surprise: Displayed with raised eyebrows and widened eyes.

These basic emotions, according to Ekman, are considered to be universal

because they are recognizable across different cultures and are associated with

distinct and specific facial expressions. Ekman’s work also highlighted the

importance of micro-expressions, which are very brief and often involuntary
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is also true while speaking. The fundamental frequency of vibration (F0)

of vocal cords determines the pitch at any instantaneous moment and its

fluctuation over time is called the F0/pitch contour. F0/pitch contour is a very

strong correlate of intonation so modifying pitch contour significantly affects

underlying intent in speech signal.

1.3.2 Intensity

Intensity variations is determined by the variation of energy of the signal in

small windows of 10-30 ms. Speech is a short-term stationary signal, meaning

the properties of signal change every few milliseconds. Therefore, analysis

window of size 10-30 ms with some overlap typically works well in practice for

short-term feature extraction such as energy. The change in energy signature

over time is called the energy/intensity contour which is yet another prosodic

feature affecting speech emotion perception.

1.3.3 Speaking Rate

Finally, speaking rate or the variation of speaking rate can denote the urgency

of the situation while speaking therefore, it can affect the underlying intent.

Speaking rate modulation is primarily used to emphasize certain portion of

the speech and de-emphasize others. Hence, learning a speaking rate modifi-

cation function from neutral to emotional speech is of importance. However,

unlike intonation and intensity, speaking rate modulation does not have any

parameterization which makes it challenging to develop a transformation

function for it. Next, we will see the standard prosody feature extraction
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length 3 x time-period. This facilitates power stabilization of each window.

Denoting the speech signal by y(t) and the Hanning window with w(t), the

windowing results in:

∫︂ 3T0

0
[y(t)w(t)]2dt = 1.125

∫︂ T0

0
[y(t)]2dt (1.1)

Suppose the pitch of a window is denoted by ω0, the power spectrum of each

window is smoothed by a rectangular window of length 2ω0/3 which gives a

smoothed power spectrum:

Ps(ω) =
3

2ω0

∫︂ ω0/3

−ω0/3
P(ω + λ) dλ (1.2)

Finally, a set of filtering operation (liftering) is carried out to compensate for

the effect of zeroing out multiples of ω0 frequency. Therefore, the overall

process can be written as:

ps(τ) = F
−1(log(Ps(ω))) then, Pl(ω) = exp F

[︁

øs(τ)øq(τ)ps(τ)
]︁

here, øs(τ) =
sin(π f0τ)

π f0τ
and, øq(τ) = q0 + 2q1cos

(︂2πτ

T0

)︂

F represents the Fourier transform operation and øq(τ) is the recovery filter

which removes effect of rectangular smoothing of power spectrum in the

previous stage.

Finally, the aperiodicity is obtained via application of PLATINUM [8]

algorithm. The aperiodicity components captures the randomness in the

quasi-periodic nature of excitation signal. It is useful for reconstructing speech

of good quality, but does not affect the underlying mood/intent of speech.
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1.5.1 Pitch and Intensity Modification

Owing to the similarity between intonation and intensity parameterization

(1-D curves), we will discuss their transformation strategy together. Once

F0 and spectral envelope is extracted, the energy contour can be determined

using et = ∑ f S2
t, f . Therefore, the dimensionality of pitch contour pt and

energy contour et is same, given by the number of analysis window on the

utterance. For a pair of domains A and B, the prosody transformation function

is denoted by F : (PA × EA) → (PB × EB). Using this function, we can

generate the appropriate pitch and energy contour in target domain (such as

neutral to angry). Then, we can generate the corresponding speech by first

creating the energy adjusted spectral envelope, i.e., SB = SA ×
√︂

EB
EA

. The

generated speech in domain B is then yB(t) = WORLD(SB, pB, A).

1.5.2 Speaking Rate Modulation

As mentioned in the last section, speaking rate is determined by the # of

words/syllables spoken per minute. Therefore, there is no direct way to

compute the changes in speaking rate in an utterance without speech-to-text

decoding [9]. Blind word/syllable segmentation procedures can be employed,

but their segmental property will make the learning function discrete. In

this thesis, we will handle this issue in an indirect manner. We defer the

discussion to chapters 6 and 7 where we will learn about a supervised and an

unsupervised method for speaking rate modulation.
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Chapter 2

Background

Speech is perhaps our primary mode of communication as humans. It is a rich

medium, in the sense that both semantic information and speaker intent are

intertwined together in a complex manner. The ability to convey emotion is an

important yet poorly understood attribute of speech. Common work in speech

analysis focuses on decomposing the signal into compact representations and

probing their relative importance in imparting one emotion versus another.

These representations can be broadly categorized into two groups: acoustic

features and prosodic features. Acoustic features (e.g., spectrum) control

resonance and speaker identity. Prosodic features (e.g., F0, energy contour)

are linked to vocal inflections that include the relative pitch, duration, and

intensity of each phoneme. Together, the prosodic features encode stress,

intonation, and rhythm, all of which impact emotion perception. For example,

expressions of anger often exhibit large variations in pitch, coupled with

increases in both articulation rate and signal energy. In this paper, we develop

an automated framework to transform an utterance from one emotional class

to another. The problem, known as emotion conversion, is an important stepping
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stone to affective speech synthesis.

Broadly, the goal of emotion conversion is to modify the perceived affect of

a speech utterance without changing its linguistic content or speaker identity.

This setting allows the user to control the speaking style, while allowing the

model to be trained on limited data. Emotion conversion is a particularly chal-

lenging problem due to the inherent ambiguity of emotions themselves [1, 2].

The boundaries between emotion classes are also blurry, and prior knowledge

about the speaker can sometimes play a major role in the emotion percep-

tion. That being said, one of the main application of emotion conversion is to

evaluate the quality of human-machine dialog systems [3]. Here, intonation

changes can indicate the level of naturalness of a conversation between a

machine and a person. Emotion conversion can also be helpful in studying

neurodevelopmental disorders such as autism, which is characterized by poor

emotion perception capability. On the technical front, being able to control the

granularity of the emotion expression in synthesized speech is an important

step towards developing an intelligent conversational system. Finally, emo-

tion conversion can be used for data augmentation when training emotion

classification or speaker recognition systems [4, 5].

Early work in emotion conversion traces its roots to neuroscientific ex-

periments, which were designed to study the influence of emotions in the

brain. Interestingly, many of the implicated features tend to generalize across

languages. For example, the work of [6] determined the F0 (i.e., pitch) con-

tour and the energy (loudness) profile as the main factors responsible for

primary emotions. Additionally, voice quality and utterance duration have
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also been identified as features affecting emotion perception [7]. Voice quality

is a function of the spectrum representation and duration can be called as a

proxy for the speaking rate. A comprehensive study was conducted by [8]

to understand the impact of systematically changing acoustic and prosodic

features on emotional perception. These experiments were performed on a

Japanese language database with some consistency shown for English.

2.1 Prior Works

Algorithms for emotion conversion fall into three general categories. The first

approach relies on constructing a statistical model of the source and target

prosodic features to allow inference from one domain to another. One example

of this approach is the work of [9], which uses classification and regression

trees (CART) to modify the F0 contour in Mandarin. An alternate strategy

uses a Gaussian Mixture Model (GMM) for voice and emotion conversion.

The central idea is to learn a GMM that captures the joint distribution of

the source and target emotional speech features during training. Inference

of a new conversion is done via the conditional mean of the target features

given the test source features. Mathematically, let zi = [xi yi]
T denote

the concatenated source and target features and ci denote the latent cluster

assignment for utterance i. From here, we have:

P(zi|ci) =
K

∑
k=1

P(zi|ci = k)P(ci = k) (2.1)

where, P(zi|ci = k) ∼ N(zi; µk, Σk) and its parameters are estimated via

the Expectation-Maximization (EM) algorithm, along with the latent prior
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P(ci = k). Using properties of the Gaussian distribution, it can be shown that

the conditional mean of the target features yi given the source features xi is

given by the expression

E[yi|xi] =
K

∑
k=1

P(ci = k|xi)
[︂

µ
y
k + Σ

xy
k (Σxx

k )−1(xi − µ
x
k )
]︂

(2.2)

where, P(ck|x) can be computed via Bayes’ Rule. One of the main drawback

of this approach is the over-smoothing of spectral parameters in inference

stage due to averaging effect. To counter this, a global variance constraint

based inference proposed by [10] was adopted for emotion conversion by [11].

The second approach for emotion conversion is based on sparse recov-

ery [12]. This technique entails learning an over-complete dictionary of both

acoustic and prosodic features for each emotion class. During conversion, the

input utterance is first decomposed using the source emotion dictionary by

estimating a coefficient matrix with sparsity prior. These coefficients are then

used for reconstruction using the target emotion dictionary elements/atoms.

The authors of [12] used active Newton-set [13] based non-negative matrix

factorization [14] to estimate the sparse coding. Mathematically, given a non-

negative matrix input X (e.g., spectrogram magnitude), we seek non-negative

matrices U and V to minimize:

J = ∥X−UV∥2
F + λ ∑

j

∥V(:, j)∥1 (2.3)

The first term in Eq. (2.3) enforces the data fidelity, whereas the second term

encourages sparsity of the learned encoding V. The variable U denotes the

overcomplete dictionary.
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The third approach for emotion conversion relies on deep neural networks

to automatically learn complex and nonlinear speech modifications. For ex-

ample, a bidirectional LSTM approach has been suggested by [15, 16] for

modifying the prosodic features. The authors further proposed using a contin-

uous wavelet transform based parameterization for the F0 and energy contour

to decompose into segmental and supra-segmental components. Our prior

work proposed an alternative method for prosodic modification based on

highway neural networks [17, 18], which maximize the representation log like-

lihood in an EM algorithm setting. We further proposed an F0 modification

scheme using the principle of diffeomorphic curve warping as a smoothness

prior for the transformed F0 contour [19]. This diffeomorphic parameteriza-

tion was extended to spectrum modification in [20]. Specifically, we used a

latent variable regularization technique to sequentially modify the F0 contour

and the spectrum.

The methods discussed so far belong to the domain of supervised learning.

Namely, they rely on labeled parallel speech data to learn the requisite emotion

conversion. Curating parallel corpora is expensive, which explains why there

are only a handful of such databases [21] available online. Beyond data scarcity,

most supervised emotion conversion methods require the parallel utterances

to be time-aligned using dynamic time warping (DTW) [22] prior to analysis.

This alignment procedure allows us to learn a frame-wise mapping between

the source and target utterances. While simple and apt for smaller corpora,

DTW is prone to errors, particularly during periods of silence or unvoiced

sounds.
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The current iteration of methods focus on unsupervised emotion conver-

sion and do not require parallel data. These models rely on expressiveness of

neural networks to learn a parametric distribution for each pair of emotions.

One of the most prominent model in this space is Generative Adversarial

Network (GAN). Mathematically, let G and D denote the generator and dis-

criminator, respectively. The objective of the GAN is a minimax loss given by

the following:

Ladv = min
G

max
D

Ex∼P(X)[log(D(x)] + Ez∼P(Z)[log(1− D(G(z))] (2.4)

where P(X) denotes the data distribution and P(Z) denotes a noise density

which is usually Normal i.e, N(0, I).

The Cycle-GAN architecture goes one step beyond Eq. 2.4 by tying two

separate GANs together via a cycle consistency objective. Formally, let A

and B denote the domains of the source and target data distributions. The

two generators in Cycle-GAN are tasked with learning transformation from

A → B and B → A, respectively. The cycle consistency loss connects the

generators by enforcing that the sequence of transformations, i.e. A→ B→ A

should look similar to the original input. For clarity, we will refer to these

generators as the ªforward" and ªbackward" transformations of the Cycle-

GAN and use the notation Gγ (forward) and Gθ (backward). Mathematically,

the cyclic objective is written as:

Lcycle = Ex∼P(X) [∥x− Gθ(Gγ(x))∥1] (2.5)

The algorithm of [23] uses a Cycle-GAN to disentangle the content and
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style of a speech utterance into two separate variables based on a priori infor-

mation embedded into the network architecture. Another approach proposed

by [24] uses a Cycle-GAN to transform the F0 contour and spectrum, as

parameterized by a discrete wavelet transform, for emotion conversion. A

Star-GAN [4] model proposed by [5] relies on a multi-task discriminator and

a single generator for conversion between multiple emotional classes. Due

to the poor quality of generated samples, the authors used this method for

data augmentation to improve emotion classification accuracy, rather than

for speech synthesis. While all these methods show tremendous promise,

one common drawback is that they have been trained and evaluated on sin-

gle speaker datasets. Thus, it is unclear how they will perform in either a

multi-speaker or an out-of-sample generalization setting.

2.2 Dataset: VESUS

Varied Emotion in Syntactically Uniform Speech (VESUS) [21] repository as

a new resource for the speech community. VESUS is a lexically controlled

database, in which a semantically neutral script is portrayed with different

emotional inflections. In total, VESUS contains over 250 distinct phrases, each

read by ten actors in five emotional states. The authors use crowd sourcing to

obtain ten human ratings for the perceived emotional content of each utterance.

Its unique database construction enables a multitude of scientific and technical

explorations.
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2.3 Pre-processing of Prosodic Features

Prosodic features such as F0 contour and energy contour have discontinuities

at word boundaries. This discontinuous nature is tedious to deal with in

machine learning models, so we develop a separate pre-processing pipelines

for F0 and energy contour to make them amenable for data-driven learning

(see Fig. 2.1). After extracting the pitch contour, the first step in pre-processing

is to remove sharp transitions that appear due to imperfect extraction algo-

rithm. We use a median filtering with a window of size 5 to remove false

voiced/unvoiced detection. A linear interpolation of the F0 contour in regions

of unvoiced signal is applied followed by a mean smoothing operation using

a kernel of size 13. Note that, this pre-processing step removes the informa-

tion about unvoiced portion of speech which can be handled by storing the

unvoiced frames indices in a database.

For energy contour, we carry out the same pre-processing but remove the

zero interpolation operation. This is done because zeros in energy contour

specifies regions of silence instead of unvoiced frames.

2.4 Diffeomorphic Transformation and LDDMM

A diffeomorphic mapping is a smooth and invertible mapping between two

manifolds. It is a shape preserving transformation. Two manifolds M and

N are said to be diffeomorphic is there exist a one-to-one continuously dif-

ferentiable function f such that f (M) = N. For the purpose of function

identifiability, we are typically interested in specification of manifolds up to a
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diffeomorphism. This search can be made coarser by using the homeomorphic

criterion instead of diffeomorphism. These mapping functions can be used to

transition from one manifold to another, for example, the manifold of pitch

contour in neutral emotion to angry emotion.

The idea of diffeomorphism stems from the concepts in abstract algebra

where a vector representation in R
n represents a collection of points, a curve or

a surface. For shape analysis and matching, high dimensional diffeomorphism

is generated via smooth flows ϕt∀t ∈ [0, 1] satisfying the following ordinary

differential equation:

d

dt
ϕt = vt ◦ ϕt, where ϕ0 = id (2.6)

Here, vt is the vector field (Eulerian) that determines the flow. The vector

fields are continuously differentiable, at least once. They are modelled as

belonging to a Hilbert space (V, ∥ · ∥) using Sobolev embedding theorems.

Therefore, diffeomorphic maps are defined via composition of smooth vector

fields. The diffeomorphism group are all those flows which have absolutely

integrable vector fields in Sobolev norm, i.e.,

Di f fV = {φ = ϕ1 : ϕ̇t = vt ◦ ϕt, ϕ0 = id,
∫︂ 1

0
∥vt∥V dt < ∞} (2.7)

Large deformation diffeomorphic mapping is a specific type of algorithm for

diffeomorphic mapping where the objective is to learn a map when the differ-

ences between landmark points (on curves/surfaces) are large. For landmark

matching between a paired collected of points {xi, yi}
N
i=1, [25] proposed the
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Figure 2.2: Graphical model: observed variable X is generated from latent variable Z.

following formulation:

min
v:ϕ̇t=vt◦ϕt

J(v) =
1

2

∫︂ 1

0

∫︂

R3
Avt · vt dx dt +

1

2 ∑
i

(ϕ1(xi)− yi)
T(ϕ1(xi)− yi)

(2.8)

Here, A is the differential operator A : V → V∗ which determines the norm

via ∥v∥2
V =

∫︁

R3 Av · v dx, v ∈ V. V∗ is the dual of V and Av is the generalized

function in the dual space. This formulation will been used later in this thesis

to estimate the deformation field for F0/energy contour estimation.

2.5 Variational Inference

Very often our data is generated by conditioning on some additional factors.

For example, in a Gaussian mixture model, the underlying assumption is that

there exist a random variable sampling the cluster index to generate the data

from. In a more general sense, the data generation process can have certain

hidden variable that we might never see in practice but need to infer about.

Fig. 2.2 shows the a very simple generative process where the observed data

is represented by X and the latent variable (e.g. cluster index in GMM) is

denoted by Z. Our goal is to infer the posterior distribution of Z conditioned
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on X, i.e. P(Z|X) which using the Bayes’ rule can be written as:

P(Z|X) =
P(X|Z)P(Z)

P(X)
, where P(X) =

∫︂

P(X|Z = z)P(z) dz (2.9)

The function P(X) is called the evidence as it is the likelihood of observed

data which we would like to maximize. Computing the evidence is intractable

in general except for cases where the integral can be estimated in a closed

form. Therefore, we need a better way to get the posterior distribution of Z.

One way to solve this problem is to approximate the posterior by a simpler

distribution which is easier to handle, such as exponential family [26, 27].

However, to estimate the parameter of this approximate distribution, we still

need a metric to quantify the notion of closeness in distribution sense.

This problem is solved by variational inference using KL-divergence as the

distance metric between two sets of distribution. KL divergence between two

distributions P(X) and P(Z) is defined as:

DKL(P(X)∥P(Z)) =
∫︂

P(X) log
P(X)

P(Z)
dX (2.10)

One way to think of KL divergence is that it is the remaining uncertainty in

Z after observing X. Variational inference, therefore, converts the problem of

estimating a distribution to an optimization problem given by:

q∗(Z) = arg min
q∈Q

DKL

[︁

P(Z|X)∥q(Z)
]︁

(2.11)

where, Q denoted the family of tractable distribution. The expectation in

this case is taken w.r.t the density P(Z|X) which we do not have access to

in general. A solution to this problem is to consider DKL

[︁

q(Z)∥P(Z|X)
]︁

for
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optimization which is easier to solve. Note that, KL divergence metric is not

symmetric, therefore, we incur a loss in the approximation which is reasonable

for practical applications.

2.5.1 Evidence Lower Bound

The KL divergence term in Equation 2.11 can be written as:

DKL = E
[︁

log q(Z)
]︁

− E
[︁

log P(Z|X)
]︁

or

− DKL + log P(X) = E
[︁

P(X, Z)
]︁

− E
[︁

q(Z)
]︁

which allows us to define the evidence lower bound (ELBO) via:

ELBO(q) = E
[︁

P(X, Z)
]︁

− E
[︁

q(Z)
]︁

= E
[︁

P(X|Z)
]︁

− DKL

[︁

q(Z)∥P(Z)
]︁

(2.12)

Thus, the ELBO lower bounds the likelihood of data and can be seen as a

regularization for the data fit [28]. A popular application of ELBO is in the

variational auto-encoder where the prior P(Z) is assumed to be a normal

Gaussian distribution.

2.5.2 Mean Field Variational Approximation

To simplify the optimization problem, the variational distribution is sometimes

chosen to be of the form:

q(Z|X) =
D

∏
i=1

q(zi) (2.13)

i.e., as a collection of independent random variable. This is called a mean field

approximation and the resulting distribution does not depend on X. However,
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Figure 2.3: A simple graphical model representing local relationships.

it is still a lower bound to the evidence function.

2.6 Directed Acyclic Graphical Models

Graphical models are a succinct way to represent joint probability distribution

over a collection of random variables using local relationships between them.

Consider a collection of binary random variables {X1, X2, X3, X4, ....XN}, in

the absence of any local relationships, the joint distribution can be written as:

P(X1, X2, X3....., XN) = P(X1)×
N

∏
i=2

P(Xi|X1:i−1) (2.14)

To completely specify this joint distribution, we need to specify about 2N

parameters. This will be infeasible if the variable Xi are defined over k classes.

Now, let’s suppose that these random variables have some local relation-

ships among each other such that, for each random variable Xi in the set, we

have an additional information about its parents πi. This relationship can

be represented in a graphical format having N nodes and the edges corre-

sponding to each element in πi. A simple example is shown in Fig. 2.3 with 5
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Figure 2.4: Conditional independence relationships induced by graphical structure.

nodes and 5 edges. Note that, each edge ending at a node represents a parent

assignment for that specific node. For example, node X2 and X3 have X1 as

their parent, node X4 has X2 and X3 as its parents, and so on. Using this

local relationship, we can now define the joint density over the set of random

variables {X1, X2, X3, X4, X5} as:

P(X1, X2, X3, X4, X5) = P(X1)P(X2|X1)P(X3|X1)P(X4|X2, X3)P(X5|X3)

(2.15)

Notice that, now we only have to specify ∑i 2|πi| parameters which is typically

much less than before.

2.6.1 Conditional Independence in Directed Graphs

Another important advantage of directed graphical models is the conditional

property embedded in it. We are often interested in knowing whether a pair of

pair of random variable are conditionally independent or not given some other

random variables. This can be easily determined using Bayes’ Ball algorithm.

Fig. 2.4 specifies the three most common types of situations that arise while

determining the conditional independence relationship. These three cases

cover all necessary information required to answer questions pertaining to
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conditional independences. Fig. 2.4(a) implies P(X, Z|Y) = P(X|Y)P(Z|Y),

i.e., X and Z are conditionally independent given Y. Fig. 2.4(b) implies the

same, i.e., X and Z are conditionally independent given Y. Note that, in the

absence of any knowledge about Y, X and Z are not marginally independent.

Finally, Fig. 2.4(c) implies X ⊥̸⊥ Z given Y but X and Z are marginally indepen-

dent. Knowing conditional independences does not allow us to infer about

the graphical structure. For example, both Fig. 2.4(a) and Fig. 2.4(b) imply the

same conditional independence, but the graphical relationships are different.

2.7 Gumbel Softmax

For unsupervised learning, the ability to sample from a categorical distribution

is an important constraint that one needs to worry about. However, it is not

easy to backpropagate through such samplers due to the discrete nature of

the distribution. One can define a proxy for the gradient function in such

cases but it is often incorrect. A simple example of categorical sampling

in neural network can be modeling a Gaussian mixture model as the latent

space representation. The uni-modal Gaussian distribution has an easy re-

parameterization trick which is widely employed, it is not the case for the

mixture model. Authors in [29] proposed a Gumbel distribution based re-

parameterization for categorical distribution. Defining z to be a categorical

random variable having π1, π2, .., πk as the class probabilities, the Gumbel-

max trick [30] allows sampling z using:

z = arg max
i

[gi + log πi] (2.16)
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the agent can take one of many actions a ∈ A. Upon taking an action, the

agent receives a reward r ∈ R and registers a change in its state s′ ∈ S. Fig. 2.5

summarizes this mechanism in a loop structure.

2.8.1 Value Functions

The agent’s policy, π(s) determines the rule of interaction, and can be prob-

abilistic or deterministic. Each state has a value function Vπ(s) which is the

expected reward an agent will achieve in future starting from s following the

policy π. It measures the goodness of state w.r.t the reward obtained. Our goal

is to learn the optimal policy and the value function, simultaneously. A single

interaction of the agent with an environment at time t can be characterized

by the tuple (St, At, Rt+1). The agent receives the reward Rt+1 after taking an

action At in state St. The environment is described by a model which specifies

the reward function and state transition. Specifically, the transition function

F denotes probability of transitioning from state s to s′ after taking action a

while receiving reward r, i.e.:

F(s′, r|s, a) = P(St+1 = s′, Rt+1 = r|St = s, At = a) (2.18)

The reward function R predicts the expected reward at next time-step if the

action a is taken:

R(s, a) = E
[︁

Rt+1|St = s, At = a
]︁

= ∑
r∈R

r ∑
s′∈S

P(s′, r|s, a) (2.19)
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Next, the policy function can be deterministic π(s) or stochastic π(a|s) =

P(A = a|S = s). The return from time step t is computed via:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + .... =
∞

∑
k=0

γkRt+k+1 (2.20)

The variable γ ∈ [0, 1] is called the discount factor which penalizes the future

rewards. Finally, the state value of a state s under policy π is defined as:

Vπ(s) = Eπ

[︁

Gt|St = s
]︁

(2.21)

and the state-action value is defined as:

Qπ(s, a) = Eπ

[︁

Gt|St = s, At = a
]︁

(2.22)

This leads to another definition of state value as:

Vπ(s) = ∑
a∈A

π(a|s)Qπ(s, a) (2.23)

2.8.2 Optimal Policy

The optimal value function yields the maximum return, i.e.:

V∗(s) = max
π

Vπ(s) and Q∗(s, a) = max
π

Qπ(s, a) (2.24)

Thee optimal policy is one which achieves these optimal value functions:

π∗ = arg max
π

Vπ(s) or π∗ = arg max
π

Qπ(s, a) (2.25)
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Defining Pa
ss′ = ∑r∈R P(s′, r|s, a), the Bellman’s Optimality equations are :

V∗(s) = max
a∈A

Q∗(s, a)

Q∗(s, a) = R(s, a) + γ ∑
s′∈S

Pa
ss′V∗(s

′)

V∗(s) = max
a∈A

(︂

R(s, a) + γ ∑
s′∈S

Pa
ss′V∗(s

′)
)︂

Q∗(s, a) = R(s, a) + γ ∑
s′∈S

Pa
ss′ max

a′∈A
Q∗(s

′, a′)

2.8.3 Policy Gradient and REINFORCE Algorithm

Policy gradient methods learn the policy πθ(a|s) using a parametric form of

the policy function. In the discrete action case, the reward function can be

defined as:

J (θ) = Vπθ
(S1) = Eπθ

[︂

V1

]︂

J (θ) = ∑
s∈S

dπθ
(s)Vπθ

(s) = ∑
s∈S

(︂

dπθ
(s) ∑

a∈A

π(a|s, θ)Qπ(s, a)
)︂
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We can compute the gradient of the reward function w.r.t θ and get the follow-

ing result:

J (θ) = ∑
s∈S

d(s) ∑
a∈A

π(a|s; θ)Qπ(s, a)

∇J (θ) = ∑
s∈S

d(s) ∑
a∈A

∇π(a|s; θ)Qπ(s, a)

= ∑
s∈S

d(s) ∑
a∈A

π(a|s; θ)
∇π(a|s; θ)

π(a|s; θ)
Qπ(s, a)

= ∑
s∈S

d(s) ∑
a∈A

π(a|s; θ)∇ ln π(a|s; θ)Qπ(s, a)

= Eπθ

[︁

∇ ln π(a|s; θ)Qπ(s, a)
]︁

Here, we replace dπθ
(s) with d(s) which has a theoretical support provided

in [31].

The REINFORCE algorithm is a Monte-Carlo approach to estimate the

parameters θ. The steps involved are:

• Initialize θ randomly.

• Generate an episode S1, A1, R2, S2, A2, R3, ...ST.

• Estimate return Gt for all time steps and update θ ← θ + αγtGt∇ ln π(At|St, θ).
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Chapter 3

Frame-wise models for Prosody

In this chapter, we introduce a new model for emotion conversion in speech

based on highway neural networks. Our model uses the contextual pitch,

energy and spectral information of a source emotional utterance to predict

the frame-wise fundamental frequency and signal intensity under a target

emotion. We also incorporate a latent gender representation to promote

cross-speaker generalizability. Our neural network is trained to maximize the

error log-likelihood under an assumed Laplacian distribution. We validate

our model on the VESUS repository collected at Johns Hopkins University,

which contains parallel emotional utterances from 10 actors across 5 emotional

classes. The proposed algorithm outperforms three state-of-the-art baselines

in terms of the mean absolute error and correlation between the predicted

and target values. We evaluate the quality of our emotion manipulations via

crowd-sourcing. Finally, we apply our emotion morphing model to utterances

generated by Wavenet to demonstrate our unique ability to inject emotion

into synthetic speech.

We circumvent the data limitations by learning a multi-speaker model that
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transforms a neutral utterance to one of the three target emotions. We focus

on modifying two prosodic features namely, pitch and signal energy [1]. Pitch,

being a correlate of the fundamental frequency, controls the intonation. In

general, pitch tends to rise for anger and happiness, and it tends to fall for

sadness and fear. Energy, on the other hand is a correlate of the intensity and

controls the fluctuations in loudness profile. Typically, the loudness is higher

when speaker is excited and is lower when in sad emotional state. However,

beyond these general trends, the actual relationship between pitch/energy

and emotion is highly complex and is governed by both local and global

speech properties. Our strategy is to learn a mapping function for these two

prosody features from a neutral state to an emotional state by factoring in

both the segmental and supra-segmental nature of speech.

Several previous works have explored the problem of emotion morphing.

For example, the work of [2] explicitly models the fundamental frequency

(F0) contour using a linear model, a Gaussian mixture model (GMM), and

a classification-regression tree (CART). In contrast, the work of [3] develops

an independent transformation model for pitch, duration and spectrum. A

GMM model constrained by global variance [4] was introduced by [5]. This

framework estimates the joint distribution of the source and target spectral

and prosody features. Another strategy relies on dictionary learning and

sparse recovery to estimate the emotional transfer function. For example, the

work of [6] uses parallel exemplars aligned using dynamic time warping [7], a

greedy optimization based sequence alignment procedure, to create a source

and a target dictionary. Going one step further, the work of [6] estimates
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a sparse encoding using an active set Newton method based non-negative

matrix factorization (NMF) [8]. The sparse encoding is used only to estimate

the contextual spectrum envelope, whereas the fundamental frequency is

directly copied from the corresponding frame of target dictionary. A more

recent approach in emotion conversion is the application of bi-directional

long-short term memory networks (Bi-LSTM) [9]. LSTMs are particularly

suited for time series data, such as speech. Simultaneous conversion of both

spectral and prosody features is carried out in [10]. In this method, the F0

and energy contour are parameterized using 10 scales of continuous wavelet

transform [11]. An approximate reconstruction of converted F0 and energy

values synthesizes the final speech signal using the STRAIGHT [12] module.

Unlike prior work, our approach converts the prosodic features without

any explicit parameterization. We rely on a highway network architecture

which is faster to train than the Bi-LSTM and more robust on small datasets.

Our highway network input consist of the smoothed spectrogram averaged

within the standard Mel-frequency bands, along with the F0 values in a 360 ms

context window, and a novel gender embedding. The highway network uses

a likelihood based loss function to predict the frame-wise pitch and energy

for the target emotion. We do not change the spectrum of the signal itself to

maintain speaker identity. Our model is trained from scratch using the VESUS

emotion dataset collected at Johns Hopkins [13]. We perform both objective

and subjective evaluation to compare the results of our proposed model

with three state-of-the-art baseline methods. Finally, we apply the emotion

morphing model to synthetic utterances generated by Google Wavenet [14].
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portion of each utterance to extract the pitch normalization parameters. The

reason behind using a long contextual window for fundamental frequency

is to account for both local and global properties. In other words, prosody is

affected by both segmental (phonetic level) and supra-segmental (syllable or

word level) characteristics of an utterance. A context of 360 ms ensures that

the pitch information for mapping function is provided over on average two

syllables. All features are extracted using a window of size 10 ms and a 10 ms

stride.

To reduce the dimensionality of the input space, we compress the spectral

envelope using the standard Mel frequency filterbanks. Namely, we first

compute a 1,024 point FFT for each frame, resulting in a 513 dimensional

magnitude spectrum S ∈ R
513×1 (frequency range 0 to π). We then use the

normalized Mel filterbank matrix to obtain a 128-dimensional input repre-

sentation. The filterbank matrix preserves the shape of the spectrum while

accelerating the training of our deep highway network. Reducing the size

to below 128 dimensions leads to noticeable loss in the shape of spectral

envelope.

The utterance-normalized pitch (zero mean, unit variance), ut allows us to

capture the extreme values of target distribution. Conceptually, this feature

acts as a flag forcing the neural network to sample from the tails of output

distribution.

The computation of energy for each frame t is done by squaring and

summing the short-time spectrum S ∈ R
513×1:
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et =

⌜

⃓

⃓

⎷

513

∑
k=1

S2
k,t t ∈ 1, 2, ...T (3.1)

where T is the total number of frames extracted from an utterance. Similar to

the pitch contour, a context of 360 ms is used for energy as well. The VESUS

repository contains parallel emotional utterances across ten different speakers.

We obtain a frame-wise correspondence between source and target prosody

features using DTW for training the neural network.

3.1.2 Highway Network Architecture

We employ a highway neural network with one input layer, four hidden

layers and one output layer along with multiple skip connections [15]. Fig. 3.1

shows the schematic diagram of the highway network architectures used for

predicting pitch and energy. The input spectral features ŝt are normalized to

mean zero and unit variance while the pitch contours pt are fed in without

any normalization. The output of highway network is given by:

p̂t = ϕ[W45 × (ϕ[W34 × (ϕ[W23 × ϕ[W12 × ϕ[W01 × {ŝt, ut, pt}+ b1]

+ b2]⊕ Ipt) + b3] + b4]⊕ Ĩpt) + b5] (3.2)

The variables Wij denote the weights going from layer i to layer j, and ϕ is the

Relu non-linearity [16] applied at the output of each hidden node. The terms

Ipt and Ĩpt represent the skip connections to the output of the second and

fourth hidden layer, respectively. While I is the identity matrix, Ĩ denotes just

the three central rows of the identity matrix I which provides a short pitch
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context of 30 ms to the neural network before the final output. As designed,

the highway network learns a perturbation on top of the input pitch values

conditioned on the source spectrum and pitch contour. The skip connections

add the correct bias, i.e, source pitch, back into the signal to better match the

ground truth target. Closer to the input layer, the full 360 ms contextual pitch

information is provided to extract important features from the contour, but as

we go deeper, a shorter context proves to be sufficient. We use p̂t to denote

the pitch predicted for the input source frame at time t. A log transformation

of the pitch tends to collapse its dynamic range and makes the predictions to

saturate at the mean of the training samples.

A similar architecture is used for the energy prediction. We replace the con-

textual pitch contour pt by contextual energy contour et. Unlike pitch, which

inherently carries gender information, predicting energy requires an auxiliary

gender input, as illustrated in Fig. 3.1. Here, we train a relatively shallow

neural network having three hidden layers with the smoothed spectrum and

pitch contour as input. The output of the final hidden layer is used as a latent

embedding for the gender gt to predict energy at time index t. Denoting the

input by {ŝt, et} ⊕ gt, the predicted energy is:

êt = ϕ[W45 × (ϕ[W34 × (ϕ[W23 × ϕ[W12 × ϕ[W01 × {ŝt, et} ⊕ gt + b1]

+ b2]⊕ Iet) + b3] + b4]⊕ Ĩet) + b5] (3.3)

During training we use a dropout [17] rate of 0.3 and batch normaliza-

tion [18] after every hidden layer and before the skip connections with identity

46



map are concatenated. These implementation details help us to improve

the generalization capability of our highway network. We use the Adam

optimizer [19] with a fixed learning rate of 0.01 and mini-batches of size 500.

3.1.3 Maximum Likelihood Objective

Since the dynamic range of pitch is very high, the standard l2 loss is not

appropriate because of its sensitivity towards penalizing extreme values in

the difference. In contrast, mean absolute error (i.e., l1 penalty) allows the

highway network to evenly focus on the less extreme values of pitch (such as

around 200 Hz which occur more frequently in the data). We train the highway

networks by maximizing the likelihood of the error for each training sample

in a mini-batch [20]. In particular, we assume that the error function defined

by En = yn − ŷn, where yn is the true value and ŷn is the model estimate, is

drawn from a Laplacian distribution with mean 0 and variance b:

En ∼
1

2b
exp

{︃

−
∥yn − ŷn∥1

b

}︃

(3.4)

The parameters of highway network, denoted by θ get updated via standard

backpropagation algorithm. From here, the variance of the error distribution b

is updated after every epoch of the highway network update in a maximum

likelihood framework similar to the expectation maximization (EM) algorithm:

b̂ =
1

N

N

∑
n=1

∥yn − ŷn∥1 (3.5)

The algorithm for training the model parameters and estimating the Laplacian

variance alternates between the following steps:
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• Update θ to minimize ∑
N
n=1 ∥yn − ŷn∥1 while b fixed.

• Update b using Eq. (3.5) while θ is fixed.

At a high level, our maximum likelihood strategy acts as a learning rate

scheduler by re-scaling the step size by variance in each epoch. In practice,

this approach improves the correlation observed between the ground truth

and predicted pitch/energy beyond the standard minimum absolute error

objective.

3.1.4 Reconstruction

In the reconstruction stage, the predicted pitch and energy values over the

input frames are smoothed using a mean filter to ensure the continuity in pitch

and energy contour. While the pitch is directly used for synthesis, the energy

values are implicitly used by re-scaling the spectrum using the equation:

Ŝt = St ×
êt

et
f or t = 1, 2, ...T (3.6)

Here, et is the original energy value of frame t while êt is the predicted energy

value. The aperiodicity component of the STRAIGHT vocoder is copied

directly from the source speech.

3.2 Experiments and Results

We carry out both the quantitative and qualitative evaluations to compare

our performance with the current state-of-the-art techniques for emotion and

prosody conversion in speech.
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3.2.1 Dataset and Experimental Setup

Our training and evaluation relies on the VESUS emotional dataset collected

at Johns Hopkins University [13]. VESUS contains a set of parallel emotional

utterances spoken by a mix of amateur and professional actors. The original

database has 2500 utterances for each of the five emotional classes: happiness,

anger, sadness, fear and neutral. The repository also contains an emotion

perception rating for each utterance provided by ten Amazon Mechanical

Turk (AMT) raters.

For the proposed model, we use only those utterances from VESUS repos-

itory which are agreed upon by more than 50% of the AMT raters. We also

omit the fear category from our experiments because of its high confusion

with sad and neutral emotions. The total numbers in our experiment are:

• For Neutral to Angry: 1534 utterances for training, 72 for validation and,

61 for testing.

• For Neutral to Happy: 790 utterances for training, 43 for validation and,

43 for testing.

• For Neutral to Sad: 1449 for training, 75 for validation and, 63 for testing.

Objective evaluation includes the mean absolute error and the Pearson’s

correlation coefficient measure between the predicted value of pitch and

energy and their ground truth counterparts. For subjective evaluation, we ask

raters on AMT to classify each of the converted test samples for perceived

emotion. Our designed survey asks AMT workers to listen to two speech files.
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One of them is the baseline neutral speech and the other one is the speech

converted into some target emotion. The order of neutral and emotional

speech is randomized to weed out any non-diligent raters or bots. After they

finish listening, we ask them to classify the emotion in both audio files. We

find this type of bias correction using source (neutral) speech to be important

because emotion perception is highly dependent on the knowledge about

speaker articulation and speaking style.

3.2.2 Baseline methods

We compare our proposed model with three state-of-the-art baseline methods.

The first baseline fits a Gaussian mixture model (GMM) [5] to the joint distri-

bution of the source and target STRAIGHT cepstral features and fundamental

frequency. We further incorporate the Global variance constraint proposed

by [4] to improve the GMM based conversion model.

The second baseline uses the sparse Non-Negative Matrix Factorization

(NMF) method developed in [6]. Here, two parallel dictionaries of STRAIGHT

spectrum are constructed from the training dataset. An active Newton set

based NMF estimates the sparse coding of input spectral features over the

source dictionary. This encoding is then used to construct the converted

spectrum and fundamental frequency from the target dictionary.

The third baseline is the Bi-LSTM model [10] which is pre trained for

voice conversion using the CMU-ARCTIC corpus [21] and then fine-tuned

for emotion conversion on the VESUS database. This method simultaneously

converts both spectral and prosodic (pitch, energy) features. The prosodic
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Table 3.1: MAE and Pearson’s Correlation measures for pitch and energy across target
emotions using universal model.

Alg. MAE(p̂t) Cor(p̂t) MAE(êt) Cor(êt)

Neutral-to-Angry

GMM 44.3 0.54 4.24 0.57

NMF 94.2 0.22 4.2 0.22

Bi-LSTM 57.4 0.34 5.77 0.56

Proposed 39.6 0.64 1.9 0.6

Neutral-to-Sad

GMM 29.1 0.8 5.87 0.53

NMF 65.3 0.4 7.9 0.32

Bi-LSTM 29.6 0.78 5.23 0.5

Proposed 22.2 0.83 3.4 0.67

Neutral-to-Happy

GMM 53.8 0.51 4.24 0.53

NMF 106.7 0.25 6.5 0.23

Bi-LSTM 67.6 0.48 4.8 0.52

Proposed 49.8 0.54 2.5 0.68

features are parameterized by continuous wavelet transform [11] coefficients.

The intention behind such parameterization is to consider both short-term

and long-term pitch and energy trajectories by using multiple scales for the

wavelet transform.

3.2.3 Results

Table 3.1 reports the quantitative performance of all four methods. Like the

baseline algorithms, we train separate models for each target emotion category.

Note that the proposed model outperforms all the baselines by a significant
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margin. The global variance based GMM model is the second best algorithm

for emotion conversion on the VESUS dataset. The high performance of GMM

compared to the Bi-LSTM can be attributed to its simplicity, which makes

it less prone to overfitting, and the large number of speakers in the VESUS

repository. Our results also suggest that the procedure used in [10] of fine-

tuning an Bi-LSTM model can not achieve the good performance for emotion

conversion. Further, the assumption that local optima for emotion conversion

should be close to the voice conversion solution on the error surface may not

necessarily be true. NMF based sparse recovery and reconstruction performs

the worst among all four models. This result is expected because there is no

explicit constraint on the estimation of sparse coding. Specifically, there are

multiple acoustic units that have very similar spectral envelopes and hence

the algorithm also does not guarantee a smooth transition going from one

frame to another.

In contrast to the baselines, our proposed pitch and energy prediction

model is more robust because it focuses on learning a single, highly relevant

transformation, rather than attempting to modify the entire spectrum. In

addition, the highway network architecture allows us to learn a perturba-

tion model that translates easily across multiple speakers. From a technical

standpoint, it also facilitates for a smooth flow of gradients during the back-

propagation [22]. Further, the EM type update of variance and weights of

highway network in each iteration has a scaling effect on the mini-batch loss.

This indirectly adjusts the learning rate during training, thereby helping the

network converge to a better local optima than the Bi-LSTM model.
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We evaluate the subjective quality of our emotion conversion using AMT.

Empirically, we found the reconstructed speech from the GMM and NMF

models to be highly distorted and unintelligible. Therefore, we only obtain

crowd-sourced ratings for our highway network and the Bi-LSTM model.

We crowd-source the same utterances spoken by same speakers for the high-

way network and Bi-LSTM model to get a uniform comparison between the

two. Fig. 3.2 (top) shows the emotion classification accuracy on the testing

utterances. Compared to the baseline model, our proposed model has higher

classification accuracy across all three emotions. Further, the classification for

neutral-to-sad is best followed by neutral-to-angry and then neutral-to-happy.

This result is in line with the objective measures for pitch prediction (see

Table 3.1). The Bi-LSTM model performs poorly because it fails to capture

important prosody variations that contribute to emotion perception.

The final experiment examines our ability to inject emotional cues into syn-

thetic speech generated by Google Wavenet [14]. We use the text-to-speech API

provided by Google to generate same utterances as spoken in the VESUS repos-

itory. The utterances are generated for a female American English speaker. For

this experiment, we fine tune the highway network by picking a speaker from

the VESUS dataset who has the most expressive emotional utterances. We use

220/120/220 samples for fine tuning the neutral to angry/happy/sad model,

respectively. The fine tuning procedure runs for only 50 epochs starting from

the mixed speaker model weights. The crowd sourcing setup is unchanged

from the previous case. Fig. 3.2 (bottom) shows the emotion classification

result on speech generated by Wavenet. We see that speech modified by the
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Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework [23,

24], which provides global convergence and optimality guarantees. At a high

level, LDDMM is based on an underlying vector field that acts on the source

contour. This vector field is parameterized by an exponential map, which

provides a smooth transition. For simplicity, we assume that the signals have

been aligned using dynamic time warping (DTW). In this case, the vector field

acts only in the vertical direction to locally change the pitch values. Fig. 3.3

illustrates this warping process on two pitch contours.

Mathematically, let pt and p̂t be the source and target pitch contours,

respectively. The time index t corresponds to the discrete sampling of the

contours from t = 0, . . . , T. Our approach is related to the landmark LDDMM

setting of [25, 26] and [27] with a vertical constraint on the vector field. In

particular, let vt(x; s) be a non-stationary and finite norm vector field across

time t and pitch values x. These vector fields generate the dynamical defor-

mations with respect to the second evolution argument s. Namely, for a fixed

point in time t, we can consider the continuous flow x ↦→ φv
t (x; s) of the vector

field for s ∈ [0, 1] defined by φv
t (x; 0) = pt and the ordinary differential equa-

tion (ODE) ∂s φv
t (x; s) = vt(φv

t (x; s); s). Here, the initial condition specifies

that we begin the evolution process from the source pitch contour. The ODE

specifies that the displacement at every new pitch value is given by the vector

field vt(x; s). The evolution process terminates at s = 1.

We now formulate the registration problem between the source pitch

contour pt and the target pitch contour p̂t through the following optimal
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control problem:

min
v∈V

1

2

∫︂ 1

0
∥vt(·; s)∥2

V ds + λ
T

∑
t=1

(φv
t (pt; 1)− p̂t)

2 (3.7)

The first term of Eq. (3.7) is a smoothness constraint on the underlying vector

field. The Hilbert norm || · ||V is implicitly defined through a 2-D exponential

kernel that operates across time and pitch. The second term of Eq. (3.7) is the

data matching term, which enforces that the warped source contour should be

close to the target contour. Notice that the parameter λ controls the trade-off

between smoothness and registration fidelity.

The Pontryagin maximum principle of optimal control [27] allows us to

derive necessary conditions for the solution to Eq. (3.7). In this case, the theory

shows that there exist variables ms
t for s ∈ [0, 1] that we call momenta. These

momenta behave like hidden state variables in the continuous-time Kalman

filter framework. The ªobserved" variables in this analogy are the pitch

values of the warped contour. The Hamiltonian dynamics associated with the

state/observer model allow us to reformulate Eq. (3.7) as a minimization over

initial momenta m0
t .

Formally, let zt(s) = [t φv
t (pt; s)]T be a two-dimensional vector of the

time and deformed pitch value, and let γij(s) be the kernel evaluated at the

pair of vectors zi(s) and zj(s). The quadratic objective for the collection of

initial momenta can be written as follows:

J (m0) =
1

2

T

∑
i,j=1

γij(0)m
0
i m0

j + λ
T

∑
t=1

(φv
t (pt; 1)− p̂t)

2 (3.8)
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subject to Hamiltonian equations. A standard approach to solve such a prob-

lem numerically is given by shooting algorithms [28]. We apply a quasi-Newton

descent method on J , where the gradient w.r.t m0 of the second term in

Eq. (3.8) is computed via the adjoint Hamiltonian equations.

Our strategy is to use Eq. (3.8) to solve directly for the initial momenta in

the training dataset, where we have access to parallel emotional utterances.

We will then train a neural network to predict these momenta directly from

the signal characteristics. This neural network will be applied to the testing

utterances to predict the (unknown) initial momenta. The contour registration

process is completely specified once we have these values.

3.3.2 Input Features for Momentum Prediction

As described above, our model predicts the initial displacement (i.e., momenta)

to transform a source utterance to the target emotion. We use two classes

of features to predict the frame-wise momentum: a compressed form of the

raw spectrum and the original pitch contour with a 200 ms context on both

sides of the frame. Our rationale for using a long contextual window for

pitch is to account for both local and global properties. Since pitch is affected

by both segmental (phonetic level) and supra-segmental (syllable or word

level) characteristics, a context of 360 ms ensures that the pitch information is

provided over on average two syllables. All input features are extracted using

a frame period of 5 ms and a 5 ms window stride.

To reduce the input dimensionality, we compress the raw spectral envelope

using the normalized Mel frequency. Specifically, we first compute a 1,024
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is given by the following expression:

mt = ϕ[W34 × ϕ[W23 × (ϕ[W12 × (ϕ[W01 × {ŝt, pt}+ b1]

⊕ Iŝt) + b2]⊕ Iŝt) + b3] + b4] (3.9)

The variables Wij in Eq. (3.9) denote the weights going from layer i to layer

j, and ϕ is the ReLU non-linearity ([16]) applied at each hidden layer and

the output. The variable bi is the bias related to the layer i. The term Iŝt

denotes the skip connections concatenated to the second and third hidden

layer output, respectively. The variable I is the identity matrix showing there

is no transformation of the features being carried out in skip connections.

Variable mt is the momentum predicted for the input source frame t. We use a

dropout [17] rate of 0.3 and batch normalization [18] after every hidden layer

and before the skip connections with identity. We use the Adam optimizer [19]

with a fixed learning rate of 0.01 and mini-batch sizes of 500.

3.3.4 Reconstruction

The predicted momenta are used to transform the entire source pitch contour.

The aperiodicity and spectrogram components are copied directly from the

source speech. We reconstruct the modified utterance using STRAIGHT by

replacing the source pitch contour with the transformed version.
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3.4 Experimental Setup

We performed both an objective and subjective evaluation of our momentum

prediction framework. The results are compared to three state-of-the-art

emotion conversion baseline algorithms.

3.4.1 Emotional Speech Dataset and Evaluation

Our training and evaluation again relies on the VESUS emotional dataset. We

consider three emotion conversion models: neutral to angry, neutral to sad,

and neutral to happy. These conversions span both high- and low-arousal

emotions to test the limits of our diffeomorphic registration approach. We

sub-select the VESUS utterances based on ≥ 50% agreement between raters.

The total numbers in our experiment are:

• Neutral to Angry: 1534 utterances for training, 72 for validation, and

100 for testing.

• Neutral to Happy: 790 utterances for training, 43 for validation, and 43

for testing.

• Neutral to Sad: 1449 utterances for training, 63 for validation, and 70

for testing.

We follow the same objective and subjective evaluation protocol as the

previous approach. Our baseline methods are once again: global variance

constrained GMM model [5], NMF technique [6] and the LSTM model for

conversion [10].
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Table 3.2: MAE and Pearson’s Correlation measures for pitch across target emotions
using multi-speaker model.

Algorithm MAE(F0) Corr(F0)

Neutral-to-Angry

GMM 44.3 0.54

NMF 94.2 0.22

Bi-LSTM 57.4 0.34

Proposed 40.5 0.61

Neutral-to-Happy

GMM 53.8 0.51

NMF 106.7 0.25

Bi-LSTM 67.6 0.48

Proposed 49.8 0.54

Neutral-to-Sad

GMM 29.1 0.8

NMF 65.3 0.4

Bi-LSTM 29.6 0.78

Proposed 27.7 0.74

3.5 Experimental Results

Table 3.2 summarizes the objective results obtained for baseline and proposed

methods. Our algorithm is uniformly better at approximating the target pitch

contour in absolute error sense. The results demonstrate that our parameteri-

zation of pitch deformation by initial momentum does work effectively.

The GMM based prosody and spectrum conversion comes a close second,

beating both NMF and Bi-LSTM based models. The reason for this can be

attributed to the simplicity of GMM which allows it to learn the parameters
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i.e., mean and covariances in high dimensional space. However, the speech

reconstructed by GMM is poor because of the averaging effect that mixture

models have. It fails to conditionally sample from the tails of joint distribution

and hence the predicted pitch wiggles about the mean of the training data.

NMF does a poor job in prediction of prosody because of the lack of any

global constraint while estimating sparse coding. The cepstral features are

not a unique representation of an acoustic unit and there exist a many-to-one

mapping. This further results in discontinuities in the converted spectrum

going from one frame to the next. In the end, the reconstructed speech is

very distorted and sometimes completely unintelligible. Bi-LSTM does worse

compared to our method of pitch approximation because of its over parame-

terization. The multi-scale wavelet transform used for encoding the prosodic

features leads to a very rough estimate of the predicted pitch and energy

contour. Furthermore, the underlying assumption about the existence of local

minima for emotion conversion being close to the voice conversion optima is

not always true.

In contrast, our proposed model predicts only one value which is the

initial momentum parameter. Besides, we design our H-Net to appropriately

learn this regression function by minimizing the l1 penalty which, unlike l2

loss allows the model to evenly focus on the less extreme parts of the target

distribution.

Our subjective evaluations are based on five crowd-sourced ratings for

each converted speech via AMT. A majority voting decides the final emotion

label of the converted utterances. We found the reconstructed speech from the

63





converted speech is distortion-less.

3.6 Conclusion

In this chapter, We have demonstrated the first multi-speaker emotion con-

version model based on modifying pitch and energy. Our novel highway

network based prosody prediction model has the lowest mean absolute error

and highest correlation with the ground truth values when trained and tested

on the VESUS emotional dataset. We trained our highway network in an alter-

nating fashion by maximizing the error likelihood. A Laplacian assumption

on the residual distribution in each mini-batch was made and was motivated

by the data itself. Our algorithm outperformed the state-of-the-art methods

for emotion conversion on subjective listening tasks by significant margins

thereby proving the effectiveness of our procedure. Finally, we showed that

our model is capable of injecting emotion into vocoder output which has not

been done before in the literature.

We further proposed a method for emotion conversion based on estimating

a curve warping function for pitch contours. The warping was based on a

diffeomorphic registration technique that generates a sequence of smooth and

invertible time-varying vector fields in an iterative fashion. We trained a high-

way network to predict the deformation parameter, also called as the initial

momentum, for every point on a given pitch contour. The warped curve was

used to reconstruct speech for three target emotions. Our experiments showed

that the speech generated by modified pitch contours were perceived more

emotional than speech generated by the baseline algorithm. Our proposed
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model retained the speaker characteristics and the quality of speech by not

changing the spectral envelope of the source audio.
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Chapter 4

Supervised

Encoder-Decoder-Predictor for F0

and Spectrum

In this chapter, we propose a new method for emotion conversion in speech

based on a chained encoder-decoder-predictor neural network architecture.

Unlike Chapter 3, we will not treat the F0 and energy value for each frame as

an i.i.d sample. Instead, we learn a model to convert the F0 contour and the

spectral envelope completely. The encoder constructs a latent embedding of

the fundamental frequency (F0) contour and the spectrum, which we regu-

larize using the Large Diffeomorphic Metric Mapping (LDDMM) registration

framework. The decoder uses this embedding to predict the modified F0

contour in a target emotional class. Finally, the predictor uses the original

spectrum and the modified F0 contour to generate a corresponding target

spectrum. Our joint objective function simultaneously optimizes the parame-

ters of three model blocks. We show that our method outperforms the existing

state-of-the-art approaches on both, the saliency of emotion conversion and
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the quality of resynthesized speech. In addition, the LDDMM regularization

allows our model to convert phrases that were not present in training, thus

providing evidence for out-of-sample generalization.

4.1 Background and Prior Works

The quality of machine-generated speech has improved phenomenally in the

last decade, largely due to the representational power of deep neural net-

works [1, 2, 3], which are trained on hundreds of hours of transcribed human

speech. However, controlling the expressiveness of synthetic speech remains

an open challenge. Recent works in emotional speech synthesis include [4],

which generates singing voice conditioned on the input rhythm, pitch and lin-

guistic features. A disentangled model for style and content is proposed by [5,

6] to infer the latent representations responsible for expressiveness. While

these models represent seminal contributions to emotional speech synthe-

sis, the latent representations are learned in an unsupervised manner, which

makes it difficult for the user to control the output emotion. Another problem

is the poor rate of speech generation due to the auto-regressive nature of these

models [7]. These challenges motivate the study of emotion conversion as

an alternative to end-to-end synthesis approaches. Notably, emotion conver-

sion methods provide controllability over the generated affect, they require

much less data to train, and the processing speed is high enough for real-time

applications.

Several interesting approaches for emotion conversion have been pro-

posed in the recent past. For example, the work of [8] uses a Gaussian Mixture
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Model with global variance constraint (GMM-GV) to modify the fundamental

frequency (F0) contour and the spectrum. A bidirectional long-short term

memory (Bi-LSTM) based architecture has been proposed by [9] to estimate the

F0 contour and the spectral features of the target emotion utterance. Another

approach by [10] converts the pitch contour and energy contour of the source

utterance using a highway neural network which maximizes the error log

likelihood in an expectation-maximization scheme. The same authors further

proposed a curve registration based method [11] to modify only the F0 con-

tour. Finally, a cycle-consistent generative adversarial network (cycle-GAN)

proposed by [12] learns to sample the pitch contour and the spectrum from

the target emotional class in an unsupervised manner. While these methods

have been successful in single-speaker settings, many of them fail on multi-

speaker dataset due to the larger overlap of F0 and spectral features between

emotional classes. In this chapter, we propose a novel approach to model

the relationship between the F0 contour and the spectral features, deriving it

from the basic knowledge of these two representations. Furthermore, unlike

other existing methods, our chained estimation also minimizes the mismatch

between F0 and the corresponding spectral harmonics. Our second contribu-

tion in this chapter is to implicitly model the target pitch contour as a smooth

and invertible warping of source F0 contour. This is done by learning a latent

embedding based on the Large Diffeomorphic Metric Mapping (LDDMM) [13,

14] framework. In essence the embedding serves as an intermediary between

the source and target emotions. We demonstrate that imposing this constraint

improves the prediction of the pitch contour significantly.
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4.2.1 Regularization via latent representation

We use an explicit prior on the latent variable to improve the prediction of

F0 and spectrum. Specifically, we model the target F0 contour as a smooth

and invertible deformation of the source F0 contour. The idea of smooth

deformations has been used extensively for images [18], but here we use it

for 2-D curves. Mathematically, let pt
A and pt

B denote a pair of source and

target F0 contours, respectively. The variable t corresponds to the location

of the analysis window as it moves across a given speech utterance. The

objective of this deformation process is to estimate a series of small vertical

displacements vt(x; s) [13] over frequency and time. The variable s ϵ [0, 1]

controls the evolution of these small displacements in the discrete setting. The

registration problem can thus be formulated as:

min
vϵV

1

2

∫︂ 1

0
∥vt(·; s)∥2

Vds + λ
T

∑
t=1

∥ϕv
t (p

t
A; 1)− pt

B∥
2
2 (4.2)

Here, ∥ · ∥V denotes the Hilbert norm which is implicitly defined in our case

by a Gaussian kernel. The variable ϕv
t denotes the net displacement field i.e,

ϕv
t =

∫︁ 1
0 vt(·; s)ds.

Further, it has been theoretically shown in [19, 20] that the objective in

Eq. (4.2) can be reformulated in terms of variables m0
t , known as the initial

momenta, according to:

Γ(m0) =
1

2

T

∑
i,j=1

γijm
0
i m0

j + λ
T

∑
t=1

∥ϕv
t (p

t
A; 1)− pt

B∥
2
2 (4.3)

The variable γij is an exponential smoothing kernel evaluated on pairs of time

points of the source contour pt
A.

During training, we solve Eq. (4.3) for every pair of source and target F0
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contours to generate the ground truth momenta. This variable summarizes

the transformation between emotion pairs. Since the momenta and source F0

contour uniquely specify the transformation, we use it as an intermediary be-

tween any given pair of utterances. In comparison, [11] predicts a momentum

for every frame of the pitch contour and then warps it over several iterations

specified by variable s. It is a sub-optimal strategy, as there is no temporal

coherence constraint in predicting the momenta. Note that we do not have

access to the ground truth momenta during testing and run the network in an

open loop fashion without intermediate regularization.

4.2.2 Encoder-Decoder-Predictor Network

Current methods in emotion conversion modify the F0 and spectrum without

imposing any explicit relationship between the features. As a result, there are

significant residual harmonics present in the spectrum, which results in the

poor quality of resynthesised speech. Our approach overcomes this limitation

via the conditional relationships modeled in Fig. 4.1. Here, the conditional

spectrum estimate is given by:

ŜB = arg max
SB

P(SB|SA, pA) (4.4)

Using rules of probability, we can rewrite Eq. (4.4) as:
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ŜB = arg max
SB

∫︂

pB

P(SB, pB|SA, pA) dpB

= arg max
SB

∫︂

pB

P(SB|SA, pB)P(pB|SA, pA) dpB

= arg max
SB

∫︂

pB

P(SB|SA, pB)×
∫︂

mAB

P(pB|mAB, pA)

× P(mAB|SA, pA) dmAB dpB

= arg max
SB

∫︂

mAB

P(mAB|SA, pA)×
∫︂

pB

P(pB|mAB, pA)

× P(SB|SA, pB) dpB dmAB

where we have used Eq. (4.1) to derive the above expression. The first term

term we encounter is P(mAB|SA, pA) which is the probability density of the

intermediate latent representation i.e., momenta. It is conditioned on both,

the source F0 contour and the spectrum. The second term, P(pB|mAB, pA)

is the density over the target F0 contour given the momenta and the source

F0 contour. Finally, P(SB|SA, pB) is the target spectrum conditioned on the

target pitch contour and the source spectrum. Note that the expression re-

quires multiple integrations, and is hence, intractable. However, we can make

point estimates for each density function using a deep convolutional neural

network [21] (CNN) thereby, allowing us to write:

78



m̂AB = arg max
mAB

P(mAB|SA, pA; θe)

p̂B = arg max
pB

P(pB|m̂AB, pA; θd)

ŜB = arg max
SB

P(SB|SA, p̂B; θp) (4.5)

The CNN approximating P(mAB|SA, pA; θe) is called an encoder because it

distills information about the input data. The CNN modeling P(pB|mAB, pA; θd)

is called the decoder because it estimates the output pitch from the latent em-

bedding and source pitch contour. The encoder-decoder portion is a basic

sequence-to-sequence model for pitch contours. Finally, the CNN model-

ing P(SB|SA, pB; θp) is called a predictor as it generates the spectrum for the

converted speech.

The architecture of these CNNs is shown in Fig. 4.2. We adapt the architec-

ture from [22] by reducing the number of residual layers in each block. The

entire sequence of three neural networks is trained together from a unified

objective. The loss function for optimizing the parameters is given by:

L = − log
(︂

P
(︂

mAB, pB, SB|SA, pA; θe, θd, θp

)︂)︂

= λe∥m̂AB −mÅ AB∥1 + λd∥p̂B − pÅ B∥1 + λp∥ŜB − SÅ B∥1 (4.6)

During training, we minimize the negative log likelihood of momenta and

the target features with respect to θ. We model the conditional distribution of
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each variable by Laplace density function. The corresponding ground truths

(mÅ AB, pÅ B, SÅ B) are used as the mean while the variances are assumed to be

constant. This in turn is equivalent to minimizing the mean absolute error

of each target variable with an appropriate scaling, defined by λe, λd and λp,

which are the hyperparameters in our model.

One benefit of coupling the neural networks is that the encoder and the

decoder become aware of the downstream task of spectrum prediction. We

train the neural network [23] using Adam optimizer [24] with a learning

rate of 1e-5 and a mini-batch of size one. 23 dimensional MFCC features are

used as spectrum representation extracted by an analysis window of length

5ms. During training, the context size is fixed at 640ms which results in

dimensionality of 128 × 1 for F0 contour and 128 × 23 for spectrum. The

dimensions of momenta are same as the F0 contour. The hyperparameters, λe,

λd and λp are set to 0.01, 1e-4 and 1e-4, respectively. We do not normalize the

input and output features during training to preserve their scale. Code can be

downloaded from: https://engineering.jhu.edu/nsa/links/.

4.3 Experiments and Results

We carry out an ablation study for the momenta mAB and a qualitative evalu-

ation of emotional salience and quality.

4.3.1 Emotional Speech Dataset

We evaluate our algorithm on the VESUS dataset [15] which contains 250

parallel utterances spoken by 10 actors (gender balanced) in neutral, sad, angry
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and happy emotional classes. Each spoken utterance has a crowd-sourced

emotional saliency rating provided by 10 workers on Amazon Mechanical

Turk (AMT). These ratings represent the ratio of workers who correctly identify

the intended emotion in a recorded utterance. For robustness, we restrict

our experiments to utterances that were correctly and consistently rated as

emotional by at least 5 of the 10 AMT workers. As a result, the total number

of utterances used are as follows:

• Neutral to Angry conversion: 1534 utterances for training, 72 for valida-

tion and, 61 for testing.

• Neutral to Happy conversion: 790 utterances for training, 43 for valida-

tion and, 43 for testing.

• Neutral to Sad conversion: 1449 utterances for training, 75 for validation

and, 63 for testing.

Our subjective evaluation includes both an emotion perception test and, a

quality assessment test. These experiments are carried out on Amazon Me-

chanical Turk (AMT); each pair of speech utterances is rated by 5 workers.

The perception test asks the raters to identify the emotion in the converted

speech sample, and the quality assessment test asks them to rate the quality

of speech sample on a scale of 1 to 5. We include both the neutral and con-

verted utterances to account for the speaker bias. Further, the samples were

randomized to mitigate the effects of non-diligent raters and to identify bots.
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4.3.2 Baselines

We compare our encoder-decoder-predictor model to three state-of-the-art

baseline methods. The first approach learns a Gaussian mixture model using

concatenated source and target features [8]. During inference, a maximum

likelihood estimate of target features is made given the source features. A

global variance constraint ensures that the estimate is not over-smooth, which

is a common problem in joint modeling techniques.

The second baseline is a Bi-LSTM supervised learning approach [9]. Since

Bi-LSTMs generally require considerable data to train, we adopt the strategy

in [9] of training the model on a voice conversion task [25] and then fine-

tuning it for emotion conversion. This method encodes the prosody features

via a Wavelet transform to represent both short-term and long-term trajectory

information of F0 and energy contours.

The third baseline is a recently proposed unsupervised method for emo-

tion conversion [12]. This algorithm uses cycle-GANs to inject emotion into

neutral utterances. A set of cycle-GAN transforms the spectrum while the

other set transforms the prosody features. Once again, prosodic features are

parameterized using Wavelet basis similar to the Bi-LSTM.

4.3.3 Experimental Results

As a sanity check, we carry out an ablation study to understand the effect

of latent variable regularization via the LDDMM momenta. Fig. 4.3 shows

the resulting mean absolute error in pitch prediction for each emotion pair.

As seen, the F0 prediction is statistically significantly better in two emotional
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4.3.3.1 Mixed Speaker Evaluation

Fig. 4.4 illustrates crowd-sourcing results on the VESUS test dataset. Our

proposed method has the highest emotional saliency rating in comparison to

the baselines. The GMM did not produce intelligible speech when trained

in a multi-speaker setting, as the F0 and spectral features do not exhibit

distinct clusters when aggregated across speakers. Hence, the results in

Fig. 4.4 correspond to single-speaker training/testing. We note that our GMM

evaluation is unfairly optimistic, and yet, the performance is worse than

our method and the cycle-GAN. The Bi-LSTM model which simultaneously

predicts the wavelet coefficients for F0 and energy, along with the spectrum

has very poor conversion results for angry and happy. It is likely that the

Bi-LSTM focuses on a subset of the features to minimize the overall loss. The

cycle-GAN, on the other hand does produce reasonable results even though it

is unsupervised. This is likely due to the implicit regularization produced by

cyclic consistency and identity loss [26]. Lastly, our proposed model has the

best conversion score for all three emotion pairs and the tightest error bars

in comparison to the baselines. Thus, our approach of combining the local

and global task in a chained model works extremely well by allowing the

individual pieces to train efficiently without losing oversight of the end goal.

The bottom plot in Figure 4.4 shows the subjective quality of speech recon-

struction after emotion conversion measured using mean opinion score (MOS).

The chained neural network is uniformly better than the baseline algorithms

on the VESUS dataset. It means that the proposed approach not only converts

the emotion with a high degree of confidence but also manages to keep the
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spectrum estimation on the pitch can learn a complex relationship between

the two which can be efficiently exploited as in our case.

The MOS in Fig. 4.5 show that Bi-LSTM has the best quality of reconstruc-

tion among the three. Empirically, it does not modify the speech at all, thereby,

making it sound more natural by default. There is a tie for the second place

between Cycle-GAN and the proposed model. Our proposed approach has

much smaller error bars than Cycle-GAN due to training with un-normalized

features and momenta regularization.

4.4 Conclusions

We have proposed a novel method for emotion conversion that modifies pitch

and spectrum using a chained neural network. Our proposed approach used

a latent variable to regularize the F0 estimation, which in turn affects the

spectrum prediction. We showed that using a diffeomorphic prior on the F0

contour and conditioning of spectrum on it leads to better generalization on

unseen utterances. The experiments were carried out on the VESUS dataset

and results on converted test samples were statistically significant. We con-

cluded that our proposed algorithm did not degrade the quality of speech

during conversion.
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Chapter 5

Unsupervised Variational

CycleGAN for F0 and Energy

This chapter introduces a new framework for non-parallel emotion conver-

sion in speech. Our framework is based on two key contributions. First, we

propose a stochastic version of the popular Cycle-GAN model. Our modi-

fied loss function introduces a Kullback±Leibler (KL) divergence term that

aligns the source and target data distributions learned by the generators, thus

overcoming the limitations of sample-wise generation. By using a variational

approximation to this stochastic loss function, we show that our KL diver-

gence term can be implemented via a paired density discriminator. We term

this new architecture a variational Cycle-GAN (VCGAN). Second, we model

the prosodic features of target emotion as a smooth and learnable deformation

of the source prosodic features. This approach provides implicit regularization

that offers key advantages in terms of better range alignment to unseen and

out-of-distribution speakers. We conduct rigorous experiments and compara-

tive studies to demonstrate that our proposed framework is fairly robust with

high performance against several state-of-the-art baselines.
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5.1 Background

Emotional cues in speech are conveyed through vocal inflections known

as prosody. Key attributes of prosody include the fundamental frequency

(F0) contour, the relative energy of the signal, and the spectrum [1]. Many

supervised and unsupervised algorithms have been proposed for emotion

conversion. For example, the work of [2] proposed a Gaussian mixture model

(GMM) to jointly model the source and target prosodic features. During

inference, the target features are estimated from the source via a maximum

likelihood optimization. A recent approach by [3] uses a Bidirectional LSTM

(Bi-LSTM) to predict the spectrum and F0 contour. To overcome the data

limitation, the authors pre-train their model on a voice conversion dataset and

then fine-tune it for emotion conversion. The prosodic manipulation proposed

by [4, 5] uses a highway neural network to predict the F0 and intensity for

each frame of the input utterance. While these models have made significant

contributions to the field, they require parallel emotional speech data for

training, which limits their generalizability.

An unsupervised technique to disentangle style and content from speech

has been proposed by [6]. This algorithm uses architecture based priors to

separate style and content from spectrum while modifying the F0 using a

linear Gaussian model. The authors of [7] offer a simpler cycle-GAN model for

non-parallel emotion conversion, which independently modifies the spectrum

and F0 contour. The latter is parameterized via a wavelet transform, which

expands the input feature dimensionality. These approaches, however, are

trained and evaluated on single speakers, with no validation on multispeaker
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conversion.

In this chapter we propose a novel technique for emotion conversion using

a variational formulation of the Cycle-GAN. Our novel loss formulation leads

to a joint density discriminator which minimizes the upper bound on KL-

divergence between the target data density and its parameterized counterpart.

Our method further learns the target emotion F0 and energy contour by

modeling them as a smooth deformation of the source emotion features. A

preliminary version of this work appeared in Interspeech 2020 [8]. This chapter

provides the following novel contributions. First, we model the transformation

of F0 and energy contours of an utterance jointly using intermediate hidden

variables. This is in contrast with the previous approach where we modify the

F0 contour and spectrum, independently. Second, our graphical model for

the conversion strategy allows us to disentangle the discriminator’s objective

for energy and F0 contour using conditional independencies directly inferred

from the graph. Finally, we evaluate our proposed framework in both, a multi-

speaker setting as well as on out-of-distribution speakers which the model

does not see during training. We further provide comparative studies about

the distribution and stability properties of our technique with a state-of-the-art

baseline.

5.2 Method

Our strategy is to manipulate two key prosodic features: the F0 (pitch) contour,

and the energy (loudness) contour. Fig. 5.1 shows the relationship between

the features during the inference step of the process. We begin with taking
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Figure 5.1: Graphical representation of our emotion conversion strategy. mp and me

serve as an intermediaries for pitch and energy contours, respectively.

an utterance in source emotion A from which we extract the F0 contour (pA)

and the mel-cepstral features (SA) using the WORLD vocoder [9]. The energy

contour (eA) is extracted directly from the spectral features. We define latent

variables called momenta (mp, me), which serve as intermediaries between

the two emotion classes under consideration. The F0 contour in target emotion

(pB) is a deterministic function of the momenta (mp) and source F0 contour,

through a diffeomorphic warping process that we describe in Section 5.2.2.

The estimated F0 contour and the source spectrum together generate the

momenta (me) for the energy contour which is then further used to generate

the cepstral features (SB). The estimated F0 contour and cepstral features

combine together to give the converted utterance in the target emotion B.

We take an unsupervised approach to model training and evaluation using

a Cycle-GAN framework. This strategy allows us to handle non-parallel and

multi-speaker datasets. For robustness, we introduce a novel KL-divergence
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loss to align the distribution of the source and target emotional classes, as

described in Section 5.2.1. The KL-divergence gives rise to a new class of

discriminators that operate on pairs of samples.

To summarize, our technical innovations are as follows:

• We propose a joint model for F0 and energy modification which uses

latent variables called momenta as an intermediary between source and

target emotion features.

• We highlight several shortcomings of cyclic consistency loss which is the

backbone of our baseline reference model and analyze them theoretically.

• We propose a new KL-divergence penalty and minimize its upper bound

to address the limitations of cyclic loss. We verify its advantages through

multiple experiments.

• We evaluate our model on multiple experiment paradigms i.e, single

speaker, mixed speaker, leave-one-fold and Wavenet to paint a complete

picture of our model.

5.2.1 Variational Cycle-GAN

The cycle consistency loss of a traditional Cycle-GAN is given by Eq. (2.5) and

repeated below for convenience:

Lcycle = Ex∼P(X) [∥x− Gθ(Gγ(x))∥1] (5.1)

This formulation imposes just a point-wise regularization on the input X and

the cyclic converted sample Gθ(Gγ(x)).
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It is easy to show that Eq. (5.1) is not a well-behaved loss function (Propo-

sitions 1 and 2 in [10]). Specifically,

• It only enforces a first-order moment matching between the generated

and target data distributions.

• The expectation in Eq. (5.1) depends on the sampling variance, which

leads to a noisy gradient estimate when optimizing the parameters of

the generator.

The first point establishes a weak coupling between the two generators.

In addition, the discriminators Dθ and Dγ do not have information about

the complementary generators when training a traditional Cycle-GAN. At a

high level, the min-max game played by the generators and discriminators is

operating on incomplete information about the underlying data.

The second point often results in poor calibration of the gradients under

scenarios where the target distribution is perfectly learnable. Practically speak-

ing, this sampling variance is unknown, which can lead to instability during

the optimization. For example, it may prompt the generator to take a step

that does not reduce the cycle consistency loss (e.g., overshooting the local

optimum). Further, because this variance is inherently tied to the parameters

of the neural network, the generators can potentially end up learning a null

or an identity function in order to minimize the expected cycle consistency

loss (e.g., mode collapse). Finally, due to the expected loss being a function

of the dimensionality of the data, it scales the gradients computed during

backpropagation making the impact of sampling variance more pronounce.
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We approach these problems by considering KL-divergence based penalty

on the input data distribution and the cyclic transformation. Formally, let

(SA, pA) and (SB, pB) be the source and target cepstrum and F0 contours of

two non-parallel utterances in emotion A and B, respectively. The generators

are denoted by Gγ : (SA, pA)→ (SB, pB) and Gθ : (SB, pB)→ (SA, pA). The

corresponding distributions learned by the generator functions are given by

Pγ(SB, pB) and Pθ(SA, pA). Our new penalty for the generator Gγ is:

LGγ
= KL

(︂

P(SA, pA)∥Pθ(SA, pA)
)︂

(5.2)

Using the law of total probability, we can write:

Pθ(SA, pA) =
∫︂ ∫︂

Pθ(SA, pA|SB, pB)

× P(SB, pB) dSB dpB (5.3)

Eq. (5.3) is generally intractable, but we can derive an upper bound on the

loss in Eq. (5.2) that can be optimized easily [10]. Effectively, we can minimize:

L̃ Gγ
= E(SA,pA)

[︂

E(SB,pB)∼Pγ

[︂

log
(︂

Pγ(SB, pB|SA, pA)

× P(SA, pA)
)︂]︂]︂

(5.4)

Eq. (5.4) highlights an important difference between traditional Cycle-

GAN and our variational approach. Namely, our min-max objective leverages

higher-order relationships by comparing the joint density of source and tar-

get data factorized by the two generators. This transparency is noticeably

absent in the traditional Cycle-GAN, in which the discriminator operates
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on the marginal densities P(SA, pA) and Pθ(SA, pA) to determine whether

the sample is ªreal" or ªfake". Finally, we implement the spectrum modifi-

cation module solely by changing the energy contour; this strategy avoids

degradation in speech quality due to errors in spectrum prediction. We have

conducted an experiment [10], which demonstrates no difference in user pref-

erence for speech generated with the original (mismatched) spectrum and

speech generated with a modified spectrum based on the new F0 contour.

5.2.2 Prosodic Regularization via Momenta

As shown in the Fig. 5.1, we use two intermediate representations (denoted

by mp and me) to model the transition of prosodic features from the source to

target emotion. This technique can be viewed as an implicit regularization on

the conversion procedure. Practically, we model the target prosodic contours

as a smooth deformation of the source F0/energy contours. This idea stems

from the domain of image registration where a moving image is iteratively

deformed to align or match with a fixed image [11]. We adapt this registration

framework from 2-dimensional image surfaces to 1-dimensional curves in the

Euclidean space.

While there are multiple ways to represent the deformation process, one

popular technique is known as the Large Deformation Diffeomorphic Metric

Mapping (LDDMM) [12, 13]. These functions are defined as a smooth and

invertible mapping between two topological manifolds. An important feature

of this LDDMM model is the ability to parameterize diffeomorphic transfor-

mations by low-dimensional embeddings known as momenta [14]. Effectively,

97



the source prosodic contour specifies the initial state, while the momenta (mp)

specifies the initial trajectory of the dynamical system. Thus, specifying the

input curve and momenta are sufficient to generate the final state of a target

curve.

Mathematically, let pt
A and pt

B denote a pair of source and target F0 con-

tours, respectively. The variable t corresponds to the location of the analysis

window as it moves across a given speech utterance. The goal of the defor-

mation process is to estimate a series of small vertical displacements vt(x; s)

over frequency and time. The integral of these small displacements produces

a final large vector field denoted by ϕv
t =

∫︁ 1
0 vt(·; s)ds [12]. Representing the

momenta variable by mp, the LDDMM objective function can be written as:

Γ(mp) =
1

2

T

∑
i,j=1

γij[mp]i[mp]j + λ
T

∑
t=1

∥ϕv
t (p

t
A; 1)− pt

B∥
2
2 (5.5)

The variable γij is an exponential smoothing kernel evaluated on pairs of

time points of the source contour pt
A whereas, λ is the trade-off between

smoothness of momenta and the difference between the source and target F0

contours.

Rather than solving Eq. (5.5) explicitly to obtain the momenta, we estimate

it blindly via sampling from the generators. From a practical standpoint, the

continuous time process specified by LDDMM can be easily discretized to

run for a fixed number of iterations. The main advantage of using a latent

regularizer is that it allows the F0 and energy contours to be generated in

a dynamically controlled fashion. Adversarial training can be susceptible

to mode collapse due to imbalance between generator-discriminator losses,
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Figure 5.2: Architecture of the neural network for F0 and energy prediction. The
output of F0 prediction is fed as input for energy estimation. Each generator has
two blocks: a stochastic block for sampling momenta and a generative/deterministic
block for curve warping (represented as an RNN).

learning rates, and the architecture of the neural networks. Deformation based

F0 estimation stabilizes the generative process and prevents it from swinging

wildly and leading to mode collapse. We will also demonstrate that this latent

regularization improves the generalization capabilities of our framework to

unseen speakers. Algorithm 1 outlines the warping process given a momenta,

an F0 contour and an exponential smoothing kernel having a scale σ. This

scale parameter controls the smoothness of the velocity vector fields and is

fixed for all our experiments.

5.2.3 Hybrid Generative Architecture

Our F0/energy conversion is a two-step process: first, we estimate the mo-

menta, then, we modify the source prosodic contours via a deterministic

warping using momenta. Our generators mimic this process by integrating a

99



stochastic component with trainable parameters and a deterministic compo-

nent with fixed/static parameters. The stochastic component for F0 momenta

prediction takes the spectrum and source F0 as its inputs. For energy momenta

prediction, the stochastic component relies on the source spectrum (which

implicitly contains the energy information) and converted F0. The dimensions

of the momenta are the same as F0 and energy contour. We empirically fix the

smoothness parameter, σ at 50 for F0 and at 2 for energy contour to span the

appropriate ranges. We adapt the 1-D convolutional architecture from [15]

for the stochastic block of the generators as shown in Fig. 5.2. It has been

experimentally verified that fully convolutional networks are more stable in a

GAN framework than including fully-connected layers [16]. The deterministic

LDDMM warping function can be represented as a recurrent neural network

(RNN) with a fixed set of parameters due to its iterative nature.

We constrain the generators to sample smoothly varying momenta by

adding a Laplacian penalty Lm = E[∥∇mp∥2] + E[∥∇me∥2] to the overall

generator loss. The gradient of this term is approximated by the first-order

difference of the momenta along the time axis. The final objective to minimize

for the loss of generator Gγ is as follows:

LGγ
= λc1

E
[︂

∥pA − pc
A∥

]︂

+ λmE
[︂

∥∇mp∥
2
2 + ∥∇me∥

2
2

]︂

+ λiE
[︂

∥eA − eI
A∥

]︂

+ λc2 E
[︂

∥eA − ec
A∥

]︂

+ λdE(SA ,pA)

[︂

E(SB ,pB)∼Pγ

[︂

log
(︂

Dγ(SA, pA, SB, pB)
)︂]︂]︂

(5.6)

In the case of energy contour modification, we add an identity loss to
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Algorithm 1: Warping to generate the target F0 contour given the

momenta and source F0 contour

1 function GenerateF0 (mp, pA);

Input :momenta (mp) and source F0 (pA)

Output : target F0 (pB)

2 Set s = 0, [pB]
0 = pA and [mp]0 = mp;

3 if s < 5 then

4 di,j ← [pA]
s
i − [pA]

s
j ;

5 Ki,j ← exp−
(di,j)

2

σ2 ;

6 [pB]
s+1
i ← [pB]

s
i + ∑l Ki,l · [mp]sl ;

7 [mp]
s+1
i ← [mp]si + 2 ·∑j

−K
σ2 di,j · [mp]si [mp]sj ;

8 s← s + 1;

9 else

10 return [pB]
s;

11 end

the generator, which keeps the modified contour ªclose" to the original. The

superscripts I and c denote the identity and cyclic components, respectively.

Identity loss has been proposed by [17] in Cycle-GANs to make the generators

more robust and allow them to reduce distortion when presented with a sam-

ple from target density itself. We omit the identity loss for the F0 conversion,

as this contour tends to vary widely across utterances and emotional classes.

Finally, we update the parameters of the stochastic block of the generators

by back-propagating through the deterministic LDDMM transformation, as

implemented by an RNN.
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5.2.4 Discriminator Loss and Architecture

We model the probability ratio term in Eq. (5.4) by a discriminator denoted by

Dγ. Conceptually, this discriminator distinguishes between the joint distribu-

tions of (SA, pA) and (SB, pB) learned by generators Gγ and Gθ, respectively.

During training of the discriminator Dγ, we minimize:

LDγ = −E(SA ,pA)

[︂

E(SB ,pB)∼Pγ

[︂

log
(︂

Dγ(SA, pA, SB, pB)
)︂]︂]︂

− E(SB ,pB)

[︂

E(SA ,pA)∼Pθ

[︂

log
(︂

1− Dγ(SA, pA, SB, pB)
)︂]︂]︂

(5.7)

A similar discriminator has been proposed to train autoencoders in an adver-

sarial setting [19, 20]. We use this discriminator to establish a macro connection

between the two generators by providing them complete information about

the generators. Another way to interpret Eq. (5.7) is that it classifies between

different factorizations of the complete data distribution by the two genera-

tors. In fact, the optimal discriminators train the corresponding generators

to minimize the Jensen-Shannon divergence between Pγ(SA, pA, SB, pB) and

Pθ(SA, pA, SB, pB) (derived in [10]).

We split each discriminator in two partial discriminators which separately

provide the feedback for F0 and energy conversion task [10]. There are three

advantages to splitting up the discriminator’s loss into an F0 and an energy

contribution. First, this strategy provides greater flexibility, as the user can

decide whether or not to perform energy conversion without altering the F0

transformation. This scenario may be useful in cases of limited training data,

as we empirically observe greater variability in energy across utterances, thus

making it harder to learn a conversion model. Second, as noted in this section,
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decoupling the F0 and energy backpropagation procedures prevents either

variable from dominating the joint distribution during training. Third, we

found empirically that training a unified discriminator results in an unstable

model [10]. This is because the gradient information must backpropagate

through the energy generator to update the F0 model parameters. Thus,

the error signal suffers from a vanishing gradient problem, which makes it

challenging to properly train the generative models. In contrast, splitting the

discriminator allows F0 model to get a direct feedback from its corresponding

discriminator for improved learning. We refer to this combined framework

for F0 and energy conversion as a Variational Cycle-GAN (VCGAN).

5.2.5 Modifying the Spectrum via Energy

The spectral envelope is highly sensitive to changes in the location and filter

response of the resonance frequencies. In fact, even minor changes can sub-

stantially degrade the quality and intelligibility of resynthesized speech. Our

VCGAN framework circumvents this problem by modifying just the energy

profile of the spectral envelope, i.e., the energy contour.

First, we extract the energy contour of the given speech signal from its

spectral representation using:

eA =

Fs
2

∑
f=0

[SA]
t
f (5.8)

where, f corresponds to the frequency and t is the time. Once the energy

contour has been modified through the VCGAN, denoted as eB, then the
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converted spectrum SB is given by:

SB = SA ×

√︃

eB

eA
(5.9)

This operation scales the frequency bins uniformly and simply modifies the

overall intensity profile of the speech utterance.

During training, we use 23-dimensional MFCC features for spectrum

representation over a context of 128 frames extracted using a 5ms windows.

The dimensionality of F0/energy contour is 128x1 while that of spectrum is

128x23. The smoothing kernel for registration is chosen to be [6, 50] and [6, 2]

for the F0 and energy contour, respectively. The generator and discriminator

networks are optimized alternately in every mini-batch update. We fix the

mini-batch size to 2 and the learning rates are fixed at 1e-5 and 1e-7 for the

generators and discriminators, respectively. We use Adam optimizer [21] with

an exponential decay of 0.5 for the first moment. Sampling process in the

generators is implemented via dropout [22] rate of 0.3 during both training

and testing.

5.3 Experimental Results: Demonstrating Model

Stability

In this section, we demonstrate the desirable properties of our variational for-

mulation, as compared to the traditional Cycle-GAN proposed in [6]. We also

demonstrate the effectiveness of momenta regularization over the standard

discrete wavelet transform representation. These experiments highlight the

benefits of our VCGAN for emotion conversion.
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Figure 5.5: Comparing the F0 contours generated by Cycle-GAN and our momenta
regularized variational model. Using diffeomorphic warping as a regularizer leads to
more stable F0 contour generation in comparison to wavelet based regularization.
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Figure 5.6: F0 RMSE comparison between Cycle-GAN and VCGAN. The results are
statistically significant at level 0.05 (* denote p-value ≤ 1e− 10).

5.3.1 VESUS Dataset

We evaluate our algorithms on the VESUS dataset [23] collected at Johns

Hopkins University. VESUS contains 250 utterances/phrases spoken by 10

different actors (gender balanced) in neutral, sad, angry and happy emotional

classes. Each spoken utterance has a crowd-sourced emotional saliency rating

collected from 10 workers on Amazon Mechanical Turk (AMT) [24]. These

ratings represent the ratio of workers who correctly identify the intended
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Figure 5.7: Energy RMSE comparison between Cycle-GAN and VCGAN. Results are
statistically significant at level 0.05 (* denote p-value ≤ 1e− 10).

emotion in a recorded utterance. For robustness, we restrict our experiments

in this section and the next to utterances that were correctly and consistently

rated as emotional by at least 5 out of the 10 AMT workers. The total number

of utterances for each emotion class are:

• Neutral to Angry conversion: 1667 utterances.

• Neutral to Happy conversion: 876 utterances.

• Neutral to Sad conversion: 1587 utterances.

5.3.2 Stability of Training

We first evaluate model stability during training. Here, we borrow from

game theory to quantify performance. Namely, the optimal outcome of an

adversarial game occurs when both participants achieve the Nash equilib-

rium [25]. Translating this idea into generative adversarial training implies

equality of generator and discriminator losses. While a strict equality is diffi-

cult to achieve in practice, similar losses typically indicate better quality of the
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plots [27] of the source, generated, and target emotion F0 values extracted over

640ms long windows. This duration typically encompasses multiple syllables

in conversational English, often corresponding to words, and is therefore

supra-segmental in nature. Notice that the point cloud of generated F0 values

by the Cycle-GAN shows poor overlap with the target F0 distribution. We

hypothesize that, as the Cycle-GAN focuses on just the first-order moments,

the generators ultimately learn a mapping function whose output lies on a

completely different manifold than the actual data distribution. This further

indicates that the Cycle-GAN acts as a poor estimator of the target data density

due to the weak constraint imposed by cycle-consistency loss. The VCGAN,

on the other hand, does a much better job of approximating the target data

density. This is because the KL-divergence penalty between the given data

distribution and its cyclic counterpart enforces a stronger global dependency

between the two generators. This macro connection in the form of feedback

from the joint-density discriminator facilitates learning a better mapping

function, especially given the limited data.

5.3.3 Effect of Momenta Regularization

The second critical component of our proposed VCGAN framework is the

momenta based regularization for modeling the target prosodic contours.

As discussed, the momenta specify an iterative warping process. In con-

trast, the works of [3, 7] use a continuous wavelet transform to parameterize

the F0 contour to stabilize its generative process. Empirically, we observe
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and target frames of the F0 (Fig. 5.6) and energy (Fig. 5.7) contours. As

seen, our momenta-based warping is significantly better than wavelet based

regularization used in [3, 6] for all three emotion conversion tasks. The overall

F0 loss is slightly higher for neutral-angry and neutral-sad conversion in

comparison to the neutral-happy conversion. This is because the sad and

angry emotions are portrayed in a more diverse manner in the VESUS dataset.

5.4 Experimental Results: Emotion Conversion

In this section we evaluate the emotion conversion performance against sev-

eral supervised and unsupervised baseline algorithms. We train a separate

model for each pair of emotions. However, the model architecture remains

fixed in each case. Our subjective evaluation includes both an emotion percep-

tion query and a quality assessment test carried out on Amazon Mechanical

Turk (AMT). Specifically, each pair of speech utterances (neutral and con-

verted) is rated by 5 workers on AMT. The perception test asks the raters to

identify the emotion in the converted speech sample after listening the corre-

sponding neutral utterance. The quality assessment test asks them to rate the

quality of the speech sample on a 1-5 scale, also called as mean opinion score

or MOS. The reason we include both the neutral and converted utterances

is to account for the speaker bias. Given the known variability in emotional

perception across people, we collect 5 ratings for each converted sample and

report the average. Finally, some samples were randomly and intentionally

corrupted to mitigate the effects of non-diligent raters and to identify/flag

bots.
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We conduct four evaluations of increasing level of difficulty. The simplest

scenario is single-speaker emotion conversion, in which we train and evaluate

the model on utterances from the same speaker. Next is a mixed-speaker

evaluation, in which we pool the utterances across speakers for each emotion

class and randomly divide them into training, validation, and testing. The

third assessment is out-of-speaker evaluation; here the models are trained

and tested on different speakers. Finally, our Wavenet evaluation is the most

difficult and queries how well the models generalize to synthetic speech.

5.4.1 Baseline Models

We compare our proposed VCGAN with several state-of-the-art algorithms

from supervised and unsupervised learning domains. The first baseline is the

global variance constrained GMM used for voice conversion, which learns

the join density of source and target emotion features [2]. The second base-

line uses a Bi-LSTM model [3] to learn the conditional density of the target

emotion features namely, the F0 and energy contours. This method uses the

wavelet decomposition of the prosodic features to control the segmental and

supra-segmental nature of prosody. The third technique is a recently proposed

Cycle-GAN framework [7] to modify the F0 contour using its wavelet parame-

terization. Further, the authors learn a secondary set of Cycle-GANs to modify

the mel-cepstral features for every pair of source-target emotions. Our fourth

baseline is a simplified version of the proposed VCGAN model [8] (referred in

experiments as VCGAN-I). It is a mixed approach in the sense that it learns a

variational Cycle-GAN for the F0 conversion and a traditional Cycle-GAN for

112



converting the Mel-cepstral features. In essence, all of the baseline techniques

in this work modify the F0 and energy contour (as extracted from the spectrum

or MFCC features). Finally, we compare our complete F0+energy modification

framework with just F0 modification to understand the role of energy contour.

5.4.2 Single Speaker Evaluation

We first evaluate how well our VCGAN framework can convert emotions for

a single speaker. Note that, this is the simplest setting in which our goal is

to show generalization on a single speaker. To maximize the amount of data,

we select the VESUS speaker with the highest number of consistently rated

utterances (see Section III-A) for each emotion pair. This yields the following

sample sizes:

• Neutral to Angry Conversion: 200 utterances for training, 25 for valida-

tion and, 10 for testing.

• Neutral to Happy Conversion: 100 utterances for training, 5 for valida-

tion and, 10 for testing.

• Neutral to Sad Conversion: 200 utterances for training, 25 for validation

and, 10 for testing.

Fig. 5.8 illustrates the performance across all models in this single speaker

setting. We notice that the Bi-LSTM suffers due to the limited training utter-

ances, which suggests that the model cannot learn an appropriate mapping

with this amount of data. GMM model fares better because it has the least

amount of parameters among all the competing methods. It is capable of
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• Neutral to Sad Conversion: 1449 utterances for training, 75 for valida-

tion and, 63 for testing.

We use the training and validation set to learn the parameters of the models

and then evaluate using the test set. Empirically, we observe that the GMM

does not produce intelligible speech in this setting due to the wide variation

of speakers. Therefore, we have removed from the analysis. Fig. 5.9 shows the

results of the crowd-sourcing experiment on test dataset. The mixed speaker

setting is more challenging than the single speaker case because of variability

across speakers in terms of estimating the dynamic range of the prosodic

features. There is a high chance of learning an average mapping by the model.

We note that the Bi-LSTM has the worst emotion conversion accuracy

(below 50%) for all three pairs of emotions. However, it also generates reason-

ably good audio quality. Empirically, we observe that the Bi-LSTM learns an

near-identity mapping, meaning it does not perform any emotion conversion,

but simply reconstructs the (already high quality) input utterance. The Cycle-

GAN [6] model fairs reasonably well in terms of emotional saliency; however,

the speech reconstruction quality is significantly lower than all three of our

proposed models. VCGAN-II (F0 and F0+energy), in comparison, shows a

uniformly consistent performance across the three emotion classes and does

an extremely good job of retaining the speech naturalness post-conversion.

We attribute this all-round performance to the momenta based regulariza-

tion and to the variational formulation. The VCGAN-I model comes close

to our proposed F0+energy framework for angry and sad emotions, but its

conversion accuracy falls below 50% for the happy emotion, making it the
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Table 5.1: Data splits used for the Out-of-Speaker Evaluation

Emotion Pair Fold Train Validation Test

Neutral-
Angry

1 1347 320 123
2 1212 455 125
3 1610 57 122
4 1310 357 125
5 1189 478 107

Neutral-
Happy

1 710 166 285
2 581 295 289
3 779 97 278
4 833 43 284
5 601 275 220

Neutral-Sad

1 1357 230 169
2 1340 247 174
3 1154 433 172
4 1329 258 173
5 1167 420 153

least consistent.

5.4.4 Out-of-Speaker Evaluation

We now tackle the more challenging task of out-of-speaker generalization.

Here, we create five folds from VESUS, each one consisting of a single male

and a single female speaker. We then train five separate models for each

neutral⇐⇒ emotional pair corresponding using four of these folds and then

test on the fifth remaining fold. Note that, this task tests the model’s ability

to generalize and learn transformation for speakers which are not part of the

training set. Since each speaker has a different number of consistently rated

emotional utterances, the data splits are fold-dependent, as shown in Table 5.1.

We sample 10 utterances for each fold and each emotion pair to collect the

final ratings. Fig. 5.10 shows the average performance across the folds for all
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methods. Once again, we evaluate two variants of our proposed framework:

VCGAN-II(F0) and VCGAN-II(F0+Energy). Once again, the GMM fails to pro-

duce intelligible speech for the out-of-speaker experiment. Therefore, we have

trained it for each speaker individually rather than fold-wise. Ultimately, the

GMM model is not suitable for a real-world application, where the speakers

may be unknown or vary between training and deployment.

At a first glance, we can see that the unsupervised models (GANs) gen-

erally outperforms the supervised method (Bi-LSTM). In fact, the Bi-LSTM

model has the worst emotion conversion accuracy (below 50%) for all three

pairs of emotions. However, it also generates the best audio quality among

all the competing models, likely due to the minimal conversion. This result

suggests a trade-off, which requires balancing the ªstrength" of the emotion

conversion but not distorting the spectrum and F0 contour by too much

modification.

Among the unsupervised models, Cycle-GAN has uniformly poor conver-

sion accuracy across all emotion pairs. It fails to generalize to unseen speakers

due to its weak generator-discriminator coupling and the variation between

training and testing speakers. The generated speech quality is however higher,

which is consistent with the behavior of the Bi-LSTM model. VCGAN models

(VCGAN-I and VCGAN-II) outperform the remaining models in the fold-wise

evaluation in emotion conversion task. They also achieve a good trade-off

between emotion conversion and maintaining the naturalness of speech. The

VCGAN-II(F0+Energy) model has the best balance among the three and is

consistent on 2 out of 3 emotion conversion tasks. The difference between
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Table 5.2: Performance across the four evaluation paradigms: Single-speaker, Mixed-
speaker, Out-of-speaker, and Wavenet for Neutral to Angry conversion.

Evaluation Algorithm Neutral-angry
Acc. MOS

Single
Speaker

GMM [2] 0.6±0.1 2.5±0.6
Bi-LSTM [3] 0.2±0.2 1.4±0.3

Cycle-GAN [6] 0.84±0.1 2.9±0.6
VCGAN-I [8] 0.86±0.1 2.4±0.4

VCGAN-II(F0) 0.44±0.1 3.0±0.5
VCGAN-II(F0+Energy) 0.8±0.2 2.9±0.6

Mixed
Speaker

Bi-LSTM [3] 0.25±0.1 2.6±0.3
Cycle-GAN [6] 0.76±0.3 2.1±0.7
VCGAN-I [8] 0.85±0.2 2.7±0.5

VCGAN-II(F0) 0.7±0.2 2.6±0.4
VCGAN-II(F0+Energy) 0.84±0.2 2.7±0.5

Out-of-
Speaker

GMM [2] 0.6±0.2 2.4±0.4
Bi-LSTM [3] 0.2±0.2 3.7±0.6

Cycle-GAN [6] 0.6±0.4 3.0±0.6
VCGAN-I [8] 0.7±0.3 2.8±0.5

VCGAN-II(F0) 0.64±0.2 2.7±0.5
VCGAN-II(F0+Energy) 0.73±0.3 2.8±0.7

Wavenet

Bi-LSTM [3] 0.41±0.2 3.0±0.5
Cycle-GAN [6] 0.77±0.2 2.46±0.5
VCGAN-I [8] 0.9±0.2 2.56±0.4

VCGAN-II(F0) 0.7±0.24 2.7±0.6
VCGAN-II(F0+Energy) 0.83±0.2 3.3±0.5

VCGAN-II(F0) and VCGAN-II(F0+Energy) demonstrates how variation in

energy plays an important role in the perception of emotion. Angry and sad

emotions seem to be affected the most by this variation. Angry emotion is

often characterized by a significant rise in the loudness, whereas sad emotion

is exactly the opposite. Our VCGAN-II(F0+Energy) model is able to capture

and encapsulate this information to some extent.
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Table 5.3: Performance across the four evaluation paradigms: Single-speaker, Mixed-
speaker, Out-of-speaker, and Wavenet for Neutral to Happy conversion.

Evaluation Algorithm Neutral-happy
Acc. MOS

Single
Speaker

GMM [2] 0.2±0.1 2.3±0.2
Bi-LSTM [3] 0.1±0.1 2.3±0.7

Cycle-GAN [6] 0.6±0.2 3.1±0.5
VCGAN-I [8] 0.6±0.2 2.8±0.4

VCGAN-II(F0) 0.58±0.2 3.0±0.4
VCGAN-II(F0+Energy) 0.68±0.2 2.8±0.4

Mixed
Speaker

Bi-LSTM [3] 0.25±0.1 2.5±0.3
Cycle-GAN [6] 0.7±0.3 2.3±0.5
VCGAN-I [8] 0.5±0.2 3.4±0.5

VCGAN-II(F0) 0.6±0.3 3.0±0.4
VCGAN-II(F0+Energy) 0.82±0.2 2.8±0.6

Out-of-
Speaker

GMM [2] 0.2±0.2 2.4±0.4
Bi-LSTM [3] 0.3±0.2 3.8±0.6

Cycle-GAN [6] 0.4±0.3 3.3±0.6
VCGAN-I [8] 0.75±0.2 2.7±0.4

VCGAN-II(F0) 0.86±0.2 2.7±0.5
VCGAN-II(F0+Energy) 0.82±0.2 2.8±0.6

Wavenet

Bi-LSTM [3] 0.25±0.2 2.98±0.5
Cycle-GAN [6] 0.53±0.3 2.66±0.5
VCGAN-I [8] 0.71±0.2 3.0±0.4

VCGAN-II(F0) 0.86±0.3 2.98±0.7
VCGAN-II(F0+Energy) 0.93±0.2 3.6±0.5

5.4.5 Wavenet Evaluation

Our final evaluation is on synthetic speech. In this case, we use the models

trained in the mixed speaker evaluation (Section IV-C) without any fine tuning.

This paradigm is more challenging because the test speaker characteristics are

completely different from the training set. We generate ªneutral" utterances

using the Wavenet API provided by Google [43]. The utterances are based

on randomly sampled phrases from the VESUS dataset to preserve syntactic
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Table 5.4: Performance across the four evaluation paradigms: Single-speaker, Mixed-
speaker, Out-of-speaker, and Wavenet for Neutral to Sad conversion.

Evaluation Algorithm Neutral-sad
Acc. MOS

Single
Speaker

GMM [2] 0.53±0.2 2.5±0.4
Bi-LSTM [3] 0.2±0.2 1.9±0.3

Cycle-GAN [6] 0.58±0.2 2.8±0.5
VCGAN-I [8] 0.5±0.2 2.8±0.4

VCGAN-II(F0) 0.64±0.2 2.9±0.6
VCGAN-II(F0+Energy) 0.66±0.2 2.6±0.5

Mixed
Speaker

Bi-LSTM [3] 0.57±0.1 2.4±0.2
Cycle-GAN [6] 0.67±0.3 2.2±0.6
VCGAN-I [8] 0.8±0.2 2.9±0.5

VCGAN-II(F0) 0.7±0.3 3.2±0.4
VCGAN-II(F0+Energy) 0.74±0.3 3.0±0.6

Out-of-
Speaker

GMM [2] 0.6±0.2 2.5±0.4
Bi-LSTM [3] 0.45±0.3 3.5±0.4

Cycle-GAN [6] 0.48±0.3 3.2±0.7
VCGAN-I [8] 0.66±0.2 3.1±0.5

VCGAN-II(F0) 0.67±0.3 3.3±0.5
VCGAN-II(F0+Energy) 0.74±0.3 2.9±0.6

Wavenet

Bi-LSTM [3] 0.41±0.2 2.8±0.6
Cycle-GAN [6] 0.73±0.2 2.3±0.5
VCGAN-I [8] 0.9±0.1 2.7±0.4

VCGAN-II(F0) 0.93±0.2 2.5±0.6
VCGAN-II(F0+Energy) 0.9±0.2 3.1±0.4

similarity between training and testing. The number of testing utterances is

the same as in Section IV-C: 61 for neutral→ angry, 43 for neutral→ happy,

and 63 for neutral→ sad. Since, the Wavenet model generates audio in time

domain directly, we use the WORLD vocoder to extract acoustic and prosodic

features.

Fig. 5.11 shows that our VCGAN-II models are extremely good at con-

verting the emotions in synthesized speech. While VCGAN-I matches the
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proposed model in terms of emotional saliency, the quality of generated audio

trends significantly lower in comparison. This is likely due to the secondary

spectrum modification, which is not harmonically matched with the modified

F0 contours. This experiment further demonstrates our VCGAN-II framework

is robust even when the unseen speaker has completely different characteris-

tics than the dataset on which the model has been trained. This is a first model

in our knowledge that generalizes so well to a synthetic speaker (simulated

by Wavenet).

5.4.6 Summary of Results

Table 5.2, Table 5.3 and Table 5.4 summarize the crowd sourcing results across

the different evaluation paradigms, i.e., single speaker, mixed speaker, out-

of-speaker, and Wavenet. Right away, we observe an inconsistency in perfor-

mance as we progress from one experiment setting to another. This variation

is expected, due to the increasing levels of difficulty of each evaluation. Specif-

ically, our single speaker evaluation queries the performance of each model

on utterances from the same speaker. In the mixed-speaker case, we train

and test the models on the same collection of speakers, but randomly split

the utterances between the two sets. This evaluation is more challenging

because the models must learn characteristics of multiple speakers. In the

out-of-speaker evaluation, we train the models on a set of four male/female

speaker pairs and test on the remaining pair. Thus, the models never see ut-

terances from the test speakers during training, which is a more difficult task.

Finally, the Wavenet evaluation queries how well the models generalize to
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synthetic speech, which by default is produced under different environmental

(and physiological) conditions.

The asterisks (∗) in Figs. 5.8-5.11 denote significantly improved perfor-

mance between the VCGAN-II (F0+Energy) and the alternate methods. This

analysis was conducted via a one-sided t-test for each emotion pair at signifi-

cance level p < 0.05. We observe that while the three VCGAN models perform

similarly, VCGAN-II tends to have more robust performance across evaluation

settings. The traditional Cycle-GAN does well on the single-speaker evalua-

tion, likely because this architecture was developed for voice conversion and

can capitalize on individual speaker characteristics. However, it achieves sig-

nificantly lower emotional saliency as the evaluation becomes more difficult

(i.e., multi-speaker, out-of-speaker, Wavenet). The GMM has variable emotion

conversion performance in the single-speaker setting, but fails to generate

intelligible speech in the multi-speaker paradigms, and performs poorly in the

other two evaluations. Finally, the Bi-LSTM achieve low emotional saliency

but consistently high MOS score. This is due to the fact that it collapses into an

identity transformation and fails to modify the utterance at all. From Table 5.2,

5.3 and 5.4, we conclude that our VCGAN-II models achieve the best trade off

between emotional saliency and speech reconstruction quality. Thus, combin-

ing F0 contour and spectrum modification (via energy) into a single unified

framework can achieve much better performance on emotion conversion and

reconstruction quality assessment tasks than modeling them separately.

By using diffeomorphic registration for the F0 and energy contour, our
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novel framework offers some key advantages over the standard wavelet pa-

rameterization. Furthermore, our momenta-based approach does not require

any speaker/cohort specific normalization to match the range of loudness

and fundamental frequency. The deformation process takes care of the indi-

vidual ranges, thereby, allowing the VCGAN to automatically adapt to the

test speaker. Additionally, the KL divergence penalty between the target data

density and the generator estimated density constrains the model to behave

in a predictable manner. The conditional independence of the target spectrum

and target F0 contour (Fig. 5.1) is another notable aspect of our approach;

empirically, it helps preserve the naturalness of the modified speech.

5.5 Conclusion

In this chapter, we have proposed a novel method for robust emotion conver-

sion. Our technique uses a modified version of Cycle-GAN called variational

Cycle-GAN (VCGAN). VCGAN was derived as an upper bound on the KL-

divergence penalty between the target data distribution and the generator

estimated distribution. We showed that this led to a new joint density discrim-

inator which constrained the forward-backward generators at the distribution

level. Empirically, we demonstrated that this distributional matching was

better at learning the target densities for emotion conversion. In addition, we

modeled the features in the target utterance as a smooth warped version of the

source. This allowed the algorithm to adaptively adjust the F0 and loudness

range of a test speaker without any feature normalization. We showed that

our approach led to a consistent performance across four emotion conversion
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tasks. Further, our framework achieved a good balance between the emotion

conversion accuracy and the naturalness of synthesized speech, as demon-

strated by real-world crowd sourcing experiments. We also compared our

proposed framework against state-of-the-art emotion conversion baselines

from supervised and unsupervised learning domain. Our method universally

outperformed these techniques.
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Chapter 6

Supervised Open-Loop Framework

for Duration

In the previous chapters, we saw how pitch and energy modifications can

be used to inject emotional cues into the neutral speech or to change the

overall speaking style [1, 2, 3, 4, 5]. The speaking rate modulation also known

as rhythm variation, plays a crucial role in conveying emotions [6] and in

diagnosing human speech pathologies [7]. While there are many approaches

for automated pitch and energy modification [8, 9, 10, 11, 12], comparatively

little progress has been made in changing the rhythm of a speech utterance. In

fact, rhythm is difficult to manipulate because, unlike pitch or energy, there is

no explicit coding for the relative duration of phonemes across the utterance.

Rather, this information is implicitly defined and varies dramatically across

speakers and utterances. As a result, rhythm modification methods either

require considerable user supervision or they are geared towards aligning to

known speech signals. Even prior work on quantifying the transitory behavior

of rhythm [13] is limited and requires a priori alignment of the audio files.

Perhaps the earliest duration modification method is the time-domain
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pitch synchronous overlap and add (TD-PSOLA) algorithm [14]. TD-PSOLA

modifies the pitch and duration of a speech signal by replicating and inter-

polating between individual frames centered at the peaks of auto-correlation

signal. However, the user must manually specify both the portion of speech

to modify and the exact manner in which it should be altered. Methods such

as [15, 16] take a more user-friendly and performative approach to modify the

pitch and rhythm, but they still require manual input to guide the process. An

alternate approach to changing rhythm is a frame-wise alignment between

a source utterance and a given target. Here, the most common approach is

Dynamic Time Warping (DTW) [17]. It is a dynamic programming approach

to align two sequences of different lengths. DTW requires both, the source

and target speech which renders it unusable for generative modeling.

Finally, recent advancements in deep learning have led to a new generation

of neural vocoders that disentangle the semantic content from the speaking

style [18, 19, 20]. These vocoders can alter the speaking rate via the learned

style embeddings. While these models represent seminal contributions to

speech synthesis, the latent representations are learned in an unsupervised

manner, which makes it difficult for the user to control the output speaking

style. Another drawback is that these methods require large amounts of

data and computational resources for adequate model training and speech

generation [21, 22].

In this chapter, we introduce an automated and adaptive speech duration

modification scheme. Our approach combines the structured simplicity of dy-

namic decoding with the representation capabilities of deep neural networks.
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Namely, we model the alignment between a source and target utterance via

a latent attention map; these maps are used as replacement of the similarity

matrix for backtracking. We train a masked convolutional encoder-decoder

network to estimate these attention maps using a stochastic mean absolute

error (MAE) formulation. Unlike the conventional DTW [17] algorithm, once

trained our framework operates in an open-loop fashion on the source utter-

ance without needing access to the target. We demonstrate our framework

on a voice conversion task using the CMU-Arctic dataset [23] and on three

multi-speaker emotion conversion tasks using the VESUS dataset [24]. Our

experiments confirm that the proposed model can perform adaptive duration

modification with limited training data and minimal distortion.

6.1 Method

Our technique uses an attention based encoder-decoder framework to process

an input sequence and produce another sequence as output. Specifically, the

input sequences used in our model are the Mel-frequency representation of a

speech signal. We further inject domain knowledge or prior into the neural

network model by restricting the scope of the attention map between the

encoded and decoded representations and strategically leverage DTW to gen-

erate intelligible speech. We provide a brief description of the training/testing

strategy followed by a discussion of the baseline methods at the end of this

section.

Fig. 6.1 illustrates our underlying generative process. Given an utterance

X, we first estimate the length T of the (unknown) target utterance Y and
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Figure 6.1: Graphical model for rhythm modification. γ and θ are the model param-
eters inferred during training. Attention At is conditionally independent of target
length T given X and M

subsequently use it to estimate a mask M for the attention map. The mask

restricts the domain of the attention vectors At at each frame t during the

inference stage to mitigate distortion. We use paired data (Xtr, Ytr) to train

a convolutional encoder-decoder network to generate the attention vectors.

During testing, we first generate the attention map from the input X and use

it to produce the target speech Y.

6.1.1 Loss Function

Formally, let X ∈ R
D×Ts denote the frame-wise Mel filter-bank energies

extracted from the input speech. Here, D is the number of filter banks, and Ts

is the number of temporal frames in the utterance. Similarly, we denote the

target speech as Y ∈ R
D×T, where the target length T is usually different from
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The functions fγ(·) and fθ(·, ·) correspond to the length prediction and energy

estimation component of the neural network. The variable At ∈ R
Ts is an

attention vector that combines frame-wise features of the source utterance X

to generate the target frame Ŷt. Our model differs from standard sequence-

to-sequence model by treating the neural network predictions as residuals

added to input sequence itself, where these residuals depend on input and the

history of predictions Ŷ0:t−1. This autoregressive property allows the neural

network to learn both segmental and supra-segmental variations that can

potentially distinguish between different speakers or emotions.

During training, we use paired data (X, Y) and maximize the likelihood

of the target speech signal with respect to the neural network weights {θ, γ}.

This likelihood can be written

P(Ŷ, T̂|X) = P(T̂|X)
T̂

∏
t=1

P(Ŷt|X, T̂, Ŷ0:t−1), (6.3)

where, the second term in Eq. (6.3) can be obtained by introducing a determin-

istic attention mask M and marginalizing At:

P(Ŷt|X, T̂, Ŷ0:t−1) = ∑
At

P(Ŷt, At|X, T̂, Ŷ0:t−1, M)

= ∑
At

P(Ŷt|X, T̂, At, Ŷ0:t−1)P(At|X, Ŷ0:t−1, M) (6.4)

The variable M here denotes the attention mask. We introduce M for mathe-

matical convenience, as it is a deterministic function of the source length Ts

and the estimated length T̂. We encode the attention At as a one-hot vector

across the Ts frames of the source speech. Thus, it follows a categorical distri-

bution. For simplicity, we model At as conditionally independent of the target
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length T̂ given the mask M and the input X. Taking the log(·) of likelihood

term and combining with Eq. (6.4) yields:

L(θ, γ) = − log
(︁

∑
At

P(Ŷt, At|X, T̂, Ŷ0:t−1, M)
)︁

− log
(︁

P(T̂|X)
)︁

= − log
(︂

∑
At

qθ(At|X, Ŷ0:t−1, M)

qθ(At|X, Ŷ0:t−1, M)
P(Ŷt, At|X, T̂, Ŷ0:t−1, M)

)︂

− log
(︁

P(T̂|X)
)︁

≤ −∑
At

qθ(At|X, Ŷ0:t−1, M) log
(︁

P(Ŷt|X, At, Ŷ0:t−1)
)︁

− log
(︁

P(T̂|X)
)︁

+ KL(qθ(At)||P(At))

= −∑
At

qθ(At|X, Ŷ0:t−1, M) log
(︁

P(Ŷt|X, At, Ŷ0:t−1)
)︁

− log
(︁

P(T̂|X)− H(qθ) + const.

≤ −∑
At

qθ(At|X, Ŷ0:t−1, M) log
(︁

P(Ŷt|X, At, Ŷ0:t−1)
)︁

− log
(︁

P(T̂|X) + const. (6.5)

The distribution qθ(·) above is an approximating distribution for the attention

vectors implemented by a convolutional network. The first inequality uses

the convexity of the − log function, and the second inequality comes from

the fact that entropy H(qθ) ≥ 0. Notice that we have implicitly assumed

P(At|X, Ŷ0:t−1, M) has a uniform distribution over the masked region as a

non-informative prior. This is a reasonable assumption given that the masking

process reduces the attention domain to a small region. However, qθ is not
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penalized for deviating from this uniform distribution prior during training.

This flexibility allows the network to learn realistic attention vectors during au-

toregressive decoding. Eq. (6.5) can be easily translated into a neural network

loss function which we minimize for {θ, γ}:

L(θ, γ) = λ1 × EAt∼qθ

[︁

log
(︁

P(Ŷt|X, At, Ŷ0:t−1)
)︁]︁

+ λ2 × log
(︁

P(T̂|X)
)︁

= λ1 × EAt

[︁

∥Ŷt −Y0
t ∥1

]︁

+ λ2 × ∥T̂ − T0∥1 (6.6)

where λ1 and λ2 are the model hyperparameters that adjusts the trade-off

between the two objectives and contains the variances of the Laplace distri-

butions. Notice that the loss in Eq. (6.6) computes an expectation over the

attention maps. We use the Monte-Carlo estimate by sampling from the atten-

tion map at each time-step. The training procedure is therefore stochastic in

nature due to this random sampling from the attention map.

6.1.2 Convolutional sequence-to-sequence model

We use a masked convolutional sequence-to-sequence model to learn the dura-

tion transformation from one domain to another. Fig. 6.2 shows the interplay

between the encoder, decoder and modified attention modules of our deep

neural network. The architecture is adapted from [25] by adding residual

connections to the final layer and reconfiguring the attention module. The

encoder in Fig. 6.2 is a stack of gated convolutions which performs two tasks:

(i) approximating the length of the target sequence and (ii) learning appropri-

ate representation for the decoding process. We insert an attention module

between the encoder and decoder layers to leverage locality constraint during
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Fig. 6.3 and is different from [27] due to hard cut-off in scope. The slope of the

Itakura parallelogram specifies the minimum and maximum speaking rates

that the reconstructed utterances are allowed to possess in comparison to the

input speech. In this chapter, we fixed the minimum and maximum variation

in speaking rate to 0.8 and 1.25, respectively, based on empirical observations

of the training data.

6.1.4 DTW Back-Tracking

Our final step uses the learned attention map as a proxy for the DTW simi-

larity matrix. This strategy allows us to train the model on a relatively small

dataset (e.g., 2-3 hours) and still generate intelligible speech during open-loop

modification of new utterances. Formally, we apply a dynamic programming

operation to the attention maps produced by the neural network to get a path

of alignment from source to target. To avoid skipping phonemes, we constrain

the dynamic programming path to take at most one horizontal or vertical step

at a time while backtracking. Once estimated, the path informs a reorgani-

zation of the source utterance frames via localized contraction and dilation

operations. Following this reorganization, the target speech is synthesized via

the WORLD vocoder [28].

We train our model using mini-batch gradient descent and the Adam

optimizer [29] with a fixed learning rate of 10−4 and a batch size of 16. The

input X are 80-dimensional Mel-filterbank energies spanning 0-8 kHz. The

projection layer expands this input to 256 dimensions. Both the encoder and

decoder consist of 10 convolutional layers, each followed by a gated linear
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unit. Given the small dataset size, we use data augmentation to mitigate over-

fitting. Specifically, we reverse the input-output sequences and randomly

extract intervals of variable size (with probability 0.5) from the full speech

utterance.

Algorithm 2: Strategy for model training

1 function trainModelParameters (X, Y);
Input :filterbank energies (X ∈ R

D×Ts , Y ∈ R
D×Tt )

Output :model parameters (θ, γ)

2 if epoch < MaxEpochs then

3 for minibatch do

4 Predict target length T̂ = fγ(X) and create the mask

M ∈ R
Ts×Tt ;

5 Estimate A ∈ R
Ts×Tt using masked convolution and sample

u ∼ U(0, 1);

6 if u < 0.2 then

7 Sample a ∈ R
Ts from ATs ;

8 Reconstruct using: Ŷt = X · a + fθ(X, Y0:t−1);

9 else

10 Reconstruct using: Ŷt = X · ATs + fθ(X, Y0:t−1);

11 end

12 Compute prediction errors and update parameters;

13 end

14 epoch← epoch + 1;

15 end

16 return trainedModel;

6.1.5 Training and Testing Strategy

During training, we optimize Eq. 6.6 based on the Mel filterbank energies Y

and utterance durations T from paired input-output utterances. The forward

pass through the network (Fig. 6.2) processes the input frames and generates
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Algorithm 3: Strategy for model testing (i.e., open-loop duration

modification)

1 function modifyDuration (X);

Input :filter-bank energy (X ∈ R
D×Ts and Y0)

Output :alignments ((x1, y1), (x2, y2), ...)

2 Predict length of target sequence T̂t = fγ(X);

3 Create attention mask M ∈ R
Ts×T̂t and Set t = 0;

4 if t < T̂t then

5 Using mask Mt, X, and Y0:t−1 estimate At;

6 Using X, Y0:t−1, and At, predict Yt;

7 t← t + 1;

8 end

9 Run DTW backtracking on the attention matrix A;

10 return (alignments (x1, y1), (x2, y2), ...(xn, yn));

an embedding to predict the target sequence length T̂. The embedding is

also used to generate an attention vector as a categorical distribution at each

decoder step inside the specified masked region. We use a stochastic sampling

procedure for the attention vector, in which we randomly mix between a

single sample from the distribution qθ and the MAP estimate. Empirically,

this strategy provides robustness to sub-optimal local minima (see Alg. 2).

During testing, we rely on the predicted length to generate the attention

map and the target frames. We also use a MAP strategy, rather than the

stochastic mixing procedure. Once generated, we use the attention map as a

proxy for the DTW similarity matrix; using a Viterbi alignment procedure, we

rearrange the input frames to produce the modified speech (Alg.3).
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6.2.2 Length Prediction

As a sanity check, we compare the predicted utterance length by our frame-

work with that of the ground truth parallel utterance. Fig. 6.4 shows the error

in predicting the length ratio in a ms/sec format. Notice that, our framework

mispredicts the utterance lengths by only 40ms/sec and 65ms/sec (on av-

erage) on CMU-ARCTIC and VESUS, respectively. Duration prediction is

particularly challenging on VESUS due to marked differences between neutral

and emotional utterances. The median prediction error for GRU model is in

the range of 400− 600ms per second of the input utterance. The Transformer

fares relatively well in comparison to GRU because of its ability to establish

long-range dependency. However, our framework performs slightly better,

perhaps due to the multi-task setup and the fusion of deep representation

with Bayesian regularization.

6.2.3 Attention Alignment

Next, we compare the open-loop alignment estimated via the attention map

with the supervised DTW algorithm where both utterances are known. To

compare the warping paths, we code the horizontal, diagonal, and vertical

moves of the backtracking procedure into three classes. We then compute the

edit distance between the attention map and DTW-based alignment schemes.

Fig. 6.5 illustrates the match ratio normalized by the average length of se-

quences. As seen, the match ratio varies between 0.70 and 0.85, which suggests

that our convolutional model can readily learn the general characteristics of

duration modification. The GRU model performs poorly in this task due
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samples set to get the baseline scores and flag non-invested listeners and

bots on AMT. As seen in Fig. 6.10, our method achieves an average MOS

between 3.7− 4.0 across the four tasks (rightmost bars). Further, the ground-

truth baseline score of each task (leftmost bars) are in the range of 4.5− 5,

whereas the MOS score of speech generated by transformer model (middle

bars) are in the range of 2− 3. It shows the superiority of proposed model

over transformer baseline. We note that CMU-ARCTIC task has the lowest

MOS, possibly due to longer and more complex utterances. Interestingly, the

MOS is unaffected by errors in length prediction, as evidenced by the VESUS

neutral-angry emotion conversion task. Thus, our model provides a robust

way to alter speech characteristics.

6.3 Conclusions

We have introduced a new framework for adaptive rhythm modification. Our

model used an attention based convolutional encoder-decoder architecture

to estimate attention maps which associate frames of the input speech with

frames of the target speech. The attention maps are modeled as latent vari-

ables in a graphical framework, which lead to a stochastic formulation of

the mean absolute error (MAE) loss for model training. During testing, the

attention map is directly used as an approximation of the similarity matrix for

a DTW-style backtracking procedure. We evaluated our framework on a voice

conversion and three separate emotion conversion tasks using CMU-ARCTIC

and VESUS corpora. Our evaluation metrics are the L1 distance for target

length prediction, and an edit distance based matching ratio for path similarity.

150



Our proposed model outperformed existing seq-2-seq models designed solely

on transformer and LSTM architectures in both metrics. Further, we ablate our

proposed model’s performance against simpler versions of it, i.e., no residual

connection and no Itakura masking scheme. These ablations showed that

removing either of these components leads to poor match ratio performance.

Overall, our framework produced similar duration modification as the vanilla

DTW, but without requiring access to the target utterance. Finally, we showed

that the re-synthesized speech had similar naturalness to most state-of-the-art

neural vocoders.
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Chapter 7

Unsupervised Markov Model for

Duration

7.1 Introduction

In the previous chapter, we discussed a supervised method for learning speak-

ing rate modulation in speech. The discussed approach relied on having

parallel data (same phrase spoken by same speaker across multiple cate-

gories), which can be expensive to obtain or sometimes infeasible. An ideal

algorithm should be able to make acoustic correspondence between collection

of utterances in different categories. This was the premise of Cycle-GAN [1]

framework which we studied in Chapter 5. Unsupervised methods are typ-

ically employed to extract meaningful representation from data for some

down-stream task. This usually requires a huge collection of unlabelled data

but the refined features can be used to train a downstream task-specific model

in a data-efficient manner. This technique is employed in recent strategies

for speech recognition where, a large self-supervised neural network (SSL) is
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trained to extract features followed by a small speech recognition models us-

ing only a fraction of the total data. Wav2Vec [2], HuBert [3, 4], and WavLM [5]

are some of the popular examples that currently employ this strategy.

The explicit parameterization of intonation and intensity variations via F0

contour and short-time energy allowed us to learn a density mapping function

via Cycle-GAN. This approach is not possible for speaking rate modulation as

we cannot summarize it efficiently at segmental and supra-segmental level.

The supervised model discussed in Chapter 6 adopted a dynamic time warp-

ing procedure which carries out local and global rhythm modification [6]. To

solve this problem in an unsupervised manner, we will make some simplifica-

tions to our problem statement and adopt a reinforcement learning strategy.

To be more specific, the rhythm modification for emotion/voice conversion

has three sub-problems:

• Identifying segments of speech that are informative of emotions.

• Predicting a constant factor of modification for the segments discovered.

• Modifying the length of important segments without hurting quality.

Here, we have made an assumption that, we do not need to modify the

rhythm of every single phoneme/syllable in an utterance. We can modify

only a subset of these components (most important ones) for the purpose

of emotion conversion. Further, these components need not be a complete

syllable or word, they can be a collection or mix of any of these components

including short pause and silences. After identifying such segments (countable

in practice), we can process them sequentially to predict a length modification
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introduces discontinuities in phase resulting in a choppy effect for listeners.

WSOLA reduces this choppiness via a correlation based local search to find

the best segment for reconstruction at any given instant.

To modify duration of a signal using overlap-add, the first step is to lay-

down the type of window function w(n), its width l and overlap factor η.

Hanning window of width more than the lowest fundamental frequency is a

popular choice for this operation. Then, the length of output signal z(n) and

the overlap factor decides the time-stamps where the window’s center would

appear in the input signal y(n). Specifically, let τ(n) be the time-stretching

function, the position of window on output signal can be derived via:

γ(1) = 1 and γ(k) = γ(k− 1) + η (7.1)

Here the total number of γ is ⌈|z|/η⌉. Knowing the γ(k), we can figure out

the window position on input signal y by σ(k) = τ−1(γ(k)). Finally, the

reconstruction by overlap-add is given by:

z(n) =

len(σ)

∑
k=1

w(n− γ(k)) · y(n− γ(k) + σ(k))

len(σ)

∑
k=1

w(n− γ(k))

(7.2)

The choice of Hanning window with an overlap factor of 0.5 ensures that

the denominator in Equation 7.2 sums to 1. Fig. 7.1 represents the schematic

diagram of this operation.

However, incorporating WSOLA in a loss function for optimization is

infeasible due to its non-differentiable nature. Therefore, we use WSOLA

based modification as a part of the environment description when deriving
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7.3.1 RL Agent

The reinforcement learning (RL) agent is a deep neural network [11] consisting

a stack of convolution and transformer layers to learn appropriate distribution

over the actions A. It is conditioned on three quantities: (a) the input speech

signal (in time domain), (b) segment mask through indicator variables, and

(c) the target emotion code corresponding to which a prediction has to be

made. Fig. 7.3 shows the neural network architecture used for estimating a

probability distribution over the allowable set of factors. Since, the distribution

is over an entire utterance, we use max-pooling on the output of transformer

layer to feed into the final softmax layer. Therefore, the policy function is a

neural network parameterized by θ. The objective of this neural network is to

maximize the expected reward which can be written as:

L(θ) = Eπ

[︂

r(s)
]︂

⇒ ∇L(θ) = ∇ ∑
a∈A

π(a|s)r(s)

∇L(θ) = ∑
a∈A

∇π(a|s)r(s)

= ∑
a∈A

π(a|s)∇ log π(a|s)r(s)

= Eπ

[︂

r(s)∇ log π(a|s)
]︂

This is known as the policy gradient theorem [12]. It suggests that to train the

neural network, we do not need estimation of gradients through the reward

function. It is specially helpful in our case because the reward framework uses

WSOLA operation which is not differentiable.
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Further, P(M1) = Ber(0.01), this constraint specifies that the masking follows

a first-order Markov property, i.e. the future is independent of past given

present. The mask distribution as time t is dependent on the mask at time

t − 1. It is largely similar (0 or 1) to its previous time-step which ensure a

continuity in the segments of importance. Fig. 7.5 shows the state transition

diagram of the corresponding Markov chain. While this prior constraint on

the mask helps identify continuous segments, it can happen that the mask

takes the value 1 for the entire duration of the speech utterance. First, we

define the distribution over the mask variables learned by the neural network

as:

qθ(M1, M2, M3...., MT|X) = qθ(M1| X)qθ(M2| X)...qθ(MT| X) (7.3)

where, we have used the mean-field approximation [14, 15] for the variational

posterior learned by the neural network (parameterized by θ). We add a

sparsity penalty at each time step via KL divergence loss with a Bernoulli

distribution of very small success. Specifically, the sparsity penalty can be

written as:

Lsparse =
T

∑
t=1

DKL

[︁

qθ(Mt∥X)|Ber(0.01)
]︁

(7.4)

Adding the sparsity penalty to approximate posterior resolves the problem of

the mask being triggered for the entire speech duration. Finally, the Markov

prior is imposed on the posterior using KL divergence penalty which can be
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written as:

Lprior = DKL

[︁

qθ(M|X)∥P(M)
]︁

= DKL

[︁

qθ(M1, M2...MT|X)∥P(M1, M2, ...MT)
]︁

= ∑
MT

∑
MT−1

... ∑
M1

qθ(M1|X)qθ(M2|X)...qθ(MT|X)

× log
qθ(M1|X)qθ(M2|X)...qθ(MT|X)

P(M1)P(M2|M1)..P(MT|MT−1)

= ∑
M1

qθ(M1|X) log
qθ(M1|X)

P(M1)
∑
M2

qθ(M2|X) log
qθ(M2|X)

P(M2|M1)

... ∑
MT

qθ(MT|X) log
qθ(MT|X)

P(MT|MT−1)

Therefore, the KL-divergence penalty [16] is decomposed into T terms where

each term can be computed conditioned on the past which has only two values,

i.e., 0 or 1. Therefore, the computation is tractable and the operation can be

vectorized easily for efficiency. Finally, qθ(Mt|X) is by parameterized by a

Bernoulli parameter between 0 and 1. We use sigmoid activation in the mask

generator module to get the posterior distribution. Then, a sampling process

generates the mask which is element-wise multiplied to the extracted features

(from convolutional stack) and fed into the salience prediction module. The

saliency loss is an L-1 penalty over the predicted softmax (5 classes: neutral,

angry, happy, sad and fear) and the ground truth.

Finally, since we sample from the variational posterior to generate the
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Amazon Mechanical Turk for each utterance. This allows us to create a soft as-

signment over mixture of emotion (neutral/angry/happy/sad/fearful) rather

than one single emotion category for prediction (See Fig. 7.6). Therefore, our

salience predictor predicts the human perception of emotion during training

and inference stage. We split the VESUS according to the following scheme:

• 11000 samples are randomly selected for training (mixed across speakers)

• 250 samples are randomly selected for validation

• 750 samples are randomly chosen for evaluation/testing

7.5.2 Emotion Recognition Accuracy

We evaluate the human perception prediction on VESUS testset. The results

are summarized in Table 7.1. We can see that the top-1 results (weighted F1

and accuracy) are above 75% which shows that the designed feature extractor

and salience predictor modules (Fig. 7.4) are good at predicting soft score over

the emotion classes. We further evaluated top-2 accuracy of the proposed

model by checking the presence of target distribution mode in the top-2 scores

of prediction. The accuracy score corresponding to this evaluation is > 90%.

This is particularly important because, in many cases the ground truth saliency

score is a tie between two or more emotions. Top-1 prediction ignores this

issue whereas top-2 captures it to some extent.

Fig. 7.7 shows the confusion matrix on the test set obtained from proposed

model. We can see that the diagonal elements are relatively higher for most

emotions. Fear category has some confusion with sad emotion which is
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innovative Markov masking strategy and implementing KL divergence-based

sparsity loss, the model not only excels in emotion recognition on the VESUS

corpus but also provides valuable insights into the identification of speech

segments for duration modification. As we look to the future, the potential to

train the RL agent to estimate a distribution over discrete modification factors

and utilize WSOLA opens up exciting avenues for further refinement and

enhancement in emotional speech synthesis research.
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Chapter 8

Conclusion

In conclusion, this thesis embarked on the ambitious journey of injecting emo-

tion into neutral and monotone speech, guided by the principles of prosody

modeling. Our overarching goal was to bridge the emotional gap in speech

by focusing on the fundamental prosodic features that shape our perception

of emotion: pitch contour, intensity contour, and rhythm variation.

While pitch and intensity could be parameterized by F0 contour and

energy contour, respectively, rhythm remained a challenge without explicit

parameterization. Through meticulous research and innovative approaches,

we set out to learn a mapping function that could transform neutral speech

into the emotional states of anger, happiness, and sadness.

Our methodology leveraged the World vocoder to decompose speech into

its essential components: the spectral envelope, F0 contour, and aperiodicity.

By focusing on the spectral envelope, we successfully extracted the energy

contour, leaving aperiodicity untouched as it was deemed less significant in

the context of emotion perception.

In Chapter 3, we delved into the development of a framewise model for
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predicting F0 and energy values using a highway neural network. This was

achieved through a maximum likelihood estimation framework, employing

a Laplace distribution loss with a zero mean and specified variance. Our

iterative strategy, reminiscent of an E-M algorithm, enabled us to estimate the

parameters of the highway network effectively. We also introduced a novel

variation of this approach, involving intermediate latent variables known as

Momenta.

The concept of Momenta variables, elucidated in the background section,

served as a unique parameterization of diffeomorphic mappings between two

manifolds. This intricate process involved a flow composed of multiple veloc-

ity vector fields, facilitating a smooth transition between the manifolds. The

low-dimensional embeddings encapsulated by Momenta fully characterized

the high-dimensional flow, paving the way for their application in our study.

Our use of Momenta as intermediaries in learning a smooth flow from

a collection of F0 and energy contours in neutral emotion to the states of

anger, happiness, and sadness introduced a valuable form of regularization.

This regularization not only enabled us to capture variations in pitch across

different speakers and emotional states but also yielded lower mean absolute

errors and closer alignment with ground-truth emotional states. Our compre-

hensive evaluation, which included comparisons with several state-of-the-art

baselines, convincingly demonstrated the robustness and versatility of our

model, especially in multi-speaker settings.

In addressing the limitations of framewise models, which tend to overlook

the segmental and supra-segmental properties of speech, Chapter 4 of this
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thesis introduces a novel approach - the Encoder-Decoder-Predictor model

for prosody modification. This innovative model takes a holistic view of

speech, converting both pitch and spectrum information for the entire utter-

ance simultaneously. It serves as an end-to-end framework, constructed with

gated convolution layers featuring residual connections to facilitate efficient

backpropagation.

One of the key advancements in our approach was the utilization of mo-

menta variables as an intermediate representation bridging the source and

target emotional states. This intermediate step plays a crucial role in regular-

izing the prediction of the F0 contour, enhancing the overall accuracy of our

model. To train the system effectively in a multi-task setting, we employed

the mean absolute error as our loss function. Furthermore, we incorporated

constraints from the WORLD vocoder into the generation process, ensuring

that the generated speech aligned more closely with natural speech patterns.

Specifically, the generation of the spectral envelope was conditioned on the

predicted pitch contour, utilizing the pitch-synchronous analysis technique to

improve the quality of synthesized speech.

Our experiments yielded compelling results, demonstrating that the reg-

ularization introduced via momenta variables significantly improved the

accuracy of pitch estimation. Furthermore, the versatility and robustness of

our proposed technique were evident as it successfully generalized to mul-

tiple speakers and performed well even in unseen phrase settings. These

findings underscore the potential of the Encoder-Decoder-Predictor model as

a valuable tool for enhancing the emotional expressiveness of speech and its
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applicability in real-world scenarios involving various speakers and speech

contexts.

In response to the requirement for parallel data time-aligned using Dy-

namic Time Warping (DTW) for supervised learning, Chapter 5 introduces

a groundbreaking approach known as the Variational CycleGAN (VCGAN).

This novel formulation addresses the limitations of traditional methods by of-

fering a more comprehensive and efficient solution for prosody modification.

VCGAN represents a significant advancement in the field, as it allows for

the simultaneous modification of both the F0 contour and energy contour in a

single pass. This simultaneous modification capability enhances the model’s

ability to capture and recreate the complex prosodic variations necessary for

expressing emotions in speech. Integral to the VCGAN framework is the

utilization of Diffeomorphic flow, particularly the momenta parameterization,

as a critical component of the generator. This choice of representation aids

in regularizing the modification process, resulting in more accurate and ex-

pressive prosody transformations. To further enhance the performance of the

VCGAN model, we addressed several limitations present in the vanilla Cycle-

GAN model. These enhancements included tackling higher-order moment

matching and addressing gradient calibration issues, which ultimately led to

more stable and precise prosody modifications.

A pivotal development in VCGAN was the incorporation of a joint density

discriminator, which effectively reduced the mismatch between generator and

discriminator losses in the adversarial setting. This strategic addition played

a crucial role in improving the overall quality and fidelity of the modified
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prosody. Extensive experimentation was conducted to evaluate the perfor-

mance of VCGAN, encompassing both seen and unseen speakers. These

experiments included comprehensive comparisons against various baselines,

showcasing the model’s robustness and adaptability. Particularly noteworthy

was the model’s ability to handle unseen speakers, which was convincingly

demonstrated through testing on speech generated by the Wavenet model.

These findings underscored the VCGAN’s potential as a versatile tool for

prosody modification, especially in scenarios involving a wide range of speak-

ers and speech contexts.

In Chapter 6, our focus shifted towards the realm of rhythm modulation,

where we introduced a supervised technique that showcased our ability to

effectively modify the rhythm of speech. This innovative approach aimed

to tackle the nuanced aspects of prosody that contribute to the rhythmic

variations observed in speech. Central to our approach was the incorpora-

tion of Dynamic Time Warping (DTW) alignment into an encoder-decoder

model, with an attention map serving as an intermediary. This sophisticated

architecture allowed us to capture the temporal relationships between speech

segments accurately, a fundamental requirement for rhythm modulation. A

key breakthrough in our methodology was the modeling of the attention map

as a latent variable with a non-informative prior. This novel approach enabled

us to approximate the cost matrix required for the DTW procedure, effectively

enhancing the efficiency and effectiveness of the rhythm modulation process.

Our masked convolutional encoder-decoder framework played a pivotal

role in auto-regressively decoding the frames of the target sequence, even
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when they did not resemble intelligible speech. Remarkably, we demonstrated

that this approximate target sequence was sufficiently capable of modifying

the duration and rhythm of the input utterance, showcasing the model’s adapt-

ability and versatility. To further refine the rhythmic qualities of the modified

speech, we introduced the Itakura parallelogram-based masking technique.

This method effectively constrained the speaking rate in the target sequence,

contributing to a more natural and expressive rhythmic transformation.

To validate the capabilities of our model, we conducted comprehensive

experiments on a range of tasks, including speaker conversion using the

CMU-ARCTIC dataset and emotion conversion using the VESUS dataset.

These experiments not only demonstrated our model’s ability to learn a robust

rhythm mapping function but also highlighted its efficiency in doing so with

a minimal dataset and a low computational footprint. Overall, Chapter 6

represents a significant step forward in the realm of rhythm modulation,

showcasing the potential for highly effective and resource-efficient prosody

modification techniques.

In Chapter 7, we introduced a novel and sophisticated framework for

rhythm modification within the realm of prosody. This innovative approach

leveraged reinforcement learning to tackle the challenge of modifying the du-

ration of specific segments within given speech while preserving the overall

emotional expression. At the core of our methodology was the utilization

of the WSOLA (Waveform Similarity Overlap and Add) technique, which is

highly effective for time-stretching or compressing audio segments. However,

183



WSOLA poses a challenge in that it is non-differentiable, making it unsuit-

able for direct integration into traditional differentiable neural networks. To

address this limitation, we turned to policy gradient methods, a powerful

technique for estimating optimal policy functions conditioned on segments of

importance within the speech.

A critical aspect of our approach was the need to identify salience regions

within the speech that are essential for conveying emotion. To achieve this, we

devised a Markov masking framework, allowing us to pinpoint continuous

regions of speech that carry crucial emotional information. These salience

regions served as the foundation for our rhythm modification policy. To guide

the reinforcement learning process effectively, we established a reward func-

tion for policy gradient. This reward function was derived from a saliency

prediction module that we trained a priori on the VESUS corpus, a rich dataset

for emotion-related speech. Importantly, the training data for the saliency pre-

dictor was augmented with soft emotional ratings obtained through Amazon

Mechanical Turk, providing a valuable source of human-annotated emotional

perception data.

In conclusion, this comprehensive thesis journeyed through the intricate

landscape of prosody modification, presenting a multifaceted approach to

inject emotion into neutral and monotone speech. Chapters 4 and 5 unveiled

the Encoder-Decoder-Predictor model and Variational CycleGAN (VCGAN),

offering novel solutions for pitch, energy contour, and rhythm modulation.

Chapter 6 introduced a supervised technique with Dynamic Time Warping
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(DTW) alignment for rhythm modification, showcasing its efficacy in a vari-

ety of tasks. In Chapter 7, a reinforcement learning framework, guided by

salience regions identified through a Markov masking framework, tackled

rhythm modification, demonstrating remarkable adaptability and emotion

preservation. These advances collectively represent a significant stride to-

ward enhancing speech expressiveness and emotion perception, fostering the

potential for more engaging human-computer interactions while showcas-

ing the versatility and robustness of these innovative prosody modification

techniques.
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